Tin(IV) and organotin(IV) derivatives of anionic 4-acyl-5-pyrazolonato ligands: synthesis, spectroscopic characterization (IR, far-IR, ${ }^{119} \mathrm{Sn}$ Mössbauer, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR) and behavior in solution Crystal and molecular structure of trans-diphenylbis[1-phenyl-3-methyl-4- 4-bromobenzoyl) -pyrazolon-5-ato]tin(IV)

Francesco Caruso ${ }^{\text {a,1 }}$, Dante Leonesi ${ }^{\text {b }}$, Fabio Marchetti ${ }^{\text {b }}$, Eleonora Rivarola ${ }^{c}$, Miriam Rossi ${ }^{\text {d }}$, Vesselin Tomov ${ }^{\text {d }}$, Claudio Pettinari ${ }^{\text {b.* }}$
${ }^{\text {a }}$ Istituto di Strutturistica Chimica ' G. Giacomello", CP 10, 00016, Monterotondo Stazione, Roma, Italy
${ }^{\text {b }}$ Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata, Italy
${ }^{\varepsilon}$ Dipartimento di Chimica Inorganica. Università degli Studi. via Archirafi 26, 90123 . Palermo, Italy
${ }^{〔}$ Vassar College, Department of Chemistry, Poughkeepsie, NY 12601, USA

Received 11 September 1995

Abstract

Stable six-coordinate tin(IV) and organotin(IV) derivatives $\mathrm{X}_{2} \mathrm{SnQ}_{2}\left(\mathrm{X}=\mathrm{Me}, \mathrm{Ph}\right.$, benzyl, cyclohexyl, Cl or $\left.{ }^{1} \mathrm{Bu}\right)\left(\mathrm{QH}=1-\mathrm{R}^{\prime}-3\right.$ -methyl-4-R $R^{\prime \prime}(C=O)$-pyrazol-5-one in general; in detail $\mathrm{Q}^{\prime} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Q}^{\prime \prime} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} ; \mathrm{Q}_{\mathrm{A}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$, $\mathrm{R}^{\prime \prime}=p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{Q}_{\mathrm{Br}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$) have been synthesized and characterized by analysis and spectral (IR and far-IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR, ${ }^{119} \mathrm{Sn}$ Mössbauer) data. Structural predictions were derived from ${ }^{119} \mathrm{Sn}$ NMR parameters such as ${ }^{1} \cdot J_{(119}{ }^{119}{ }^{\left.-{ }^{13} \mathrm{C}\right)} \cdot{ }^{2} \cdot J_{\left({ }^{119} S_{\mathrm{Sn}}-{ }^{111}\right)}$ and $\delta\left({ }^{119} \mathrm{Sn}\right)$. The diffraction study of the complex $\left[\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}\right]$ shows the metal to be six-coordinate in a skewed trapezoidal bipyramidal geometry; Sn-O distances are $2.12(1)$ and $2.143(7) \AA$, and 2.223(8) and 2.26(1) \AA and the $\mathrm{Ph}-\mathrm{Sn}-\mathrm{Ph}$ bond angle is $173.0(7)^{\circ}$.

Keywords: Tin; ${ }^{119}$ Sn Mössbauer spectra; X-ray structure; IR; NMR; Pyrazolonato complexes

1. Introduction

Diorganotin(IV) derivatives of bidentate O-donor ligands play an important role in many industrial and biological applications [1]: for example carboxylate complexes are known as PVC stabilizers [2] and as catalysts for transesterification reactions [3], polyurethane polymerizations [3] and RTV silicone curing reactions [4], while derivatives of acetylacetone [5], of salicylic acid [6] and the above-mentioned carboxylate compounds [7] possess antitumor properties. The latter are presumably because tin-oxygen bonds can be easily hydrolyzed, giving rise to intermediates that are be-

[^0]lieved to link as $\mathrm{R}_{2} \mathrm{Sn}^{2+}$ moieties to biocellular macromolecules like DNA [8].

We have recently synthesized organotin(IV) derivatives of $4-\mathrm{R}(\mathrm{C}=\mathrm{O})$ pyrazolones [9], a family of heterocyclic enolizable bidentate O -donors (Fig. 1), analogous to 2,4 -pentanedione and widely used to extract metal ions and as complexing agents in trace elements spectrophotometric analysis [10].

The crystal structures of three $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{Q})_{2}$ derivatives (where $\mathrm{R}=\mathrm{Me},{ }^{\mathrm{t}}$) Bu and QH is 4 -aryl-1-phenyl-3-meth-ylpyrazol-5-one) were also determined [9a,c,f]: the tin atom was always found in a strongly distorted octahedral environment, with the two alkyl groups in trans configuration ca. $150-155^{\circ}$ and the pyrazolonate ligands linked to the tin atom through two different sets of $\mathrm{Sn}-\mathrm{O}$ bonds. This kind of configuration, known as skewed trapezoidal bipyramidal (STB), is relatively

Fig. 1. $\mathrm{Q}^{\prime} \mathrm{H}: \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Q}^{\prime \prime} \mathrm{H}: \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{Q}_{\mathrm{Br}} \mathrm{H}: \mathrm{R}=p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$; $\mathrm{Q}_{\mathrm{A}} \mathrm{H}: \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$.
common for organotin(IV) compounds and, in accordance with Kepert's theoretical model [11], it is generally possible to ascribe the distortion to the small bites of the ligands [12]. In fact, in our compounds the bite of the acylpyrazolonates ranges from 78 to 80°, while in several diorganotin(IV)bis(acetylacetonato) derivatives, which adopt a regular octahedral geometry, the ligand bite is found in the range $83-86^{\circ}$ [13].

In this paper we report the crystal structure of a $\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{Q})_{2}$ derivative which shows surprisingly a more regular trans octahedral environment around tin. The axial angle ($\mathrm{C}-\mathrm{Sn}-\mathrm{C}$) is $173.0(7)^{\circ}$, the four $\mathrm{Sn}-\mathrm{O}$ bonds are essentially equivalent and the bite $(\mathrm{O}-\mathrm{Sn}-\mathrm{O})$ is increased to $84.5(4)$ and $85.1(3)^{\circ}$.

In this context it seemed interesting to carry out a more detailed study on a series of $\mathrm{R}_{2} \mathrm{SnQ}_{2}$ derivatives (where $\mathrm{R}=\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bt}, \mathrm{Ph}$, benzyl (Bz), cyclohexyl (Cy), Cl and $\left.\mathrm{QH}=\mathrm{Q}^{\prime} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H}, \mathrm{Q}_{\mathrm{Br}} \mathrm{H}, \mathrm{Q}_{\mathrm{A}} \mathrm{H}\right)$, some of which were synthesized for the first time, to establish the response of ${ }^{119} \mathrm{Sn}$ Mössbauer, far-IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra parameters to the structure and bonding in these complexes. In particular, we have been tried to correlate the electronegativity and the steric hindrance of R groups and (Q^{-}) proligands to the geometry of our derivatives.

2. Results and discussion

The compounds 1-24 listed below are obtained in good yields according to the following displacement reaction carried out generally in methanol or ethanol and alkali:

$$
\begin{aligned}
& 2 \mathrm{QH}+\mathrm{R}_{n} \mathrm{SnX}_{4-n}+2 \mathrm{KOH} \\
& \quad \rightarrow \mathrm{R}_{n} \mathrm{X}_{4-n-2} \mathrm{Sn}(\mathrm{Q})_{2}+2 \mathrm{KX}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The reactions are rapid at room temperature, except those involving olibenzyltin(IV) derivatives which require a longer reaction time.

Relevant analytical data of the new derivatives 4,10 , 16, 21, 22 and 24 are reported in the Experimental section, whereas the spectral and analytical data of $1-3$, $5-9,11-15,17-20$ and 23 agree with those described in previous papers [9a,d,f].

As an alternative to the use of KOH , which may form oxides with $\mathrm{R}_{n} \mathrm{SnX} \mathrm{A}_{-n}$ such as $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{x}$ or $\left(\mathrm{R}_{2} \mathrm{SnX}\right)_{2} \mathrm{O}$, we have also employed the following procedures:

$$
\begin{aligned}
& 2 \mathrm{QH}+\mathrm{R}_{n} \mathrm{SnX} \mathrm{~S}_{4-n}+2 \mathrm{NR}_{3} \\
& \quad \rightarrow \mathrm{R}_{n} \mathrm{X}_{4-n-2} \mathrm{Sn}(\mathrm{Q})_{2}+2\left[\mathrm{NHR}_{3}\right]^{+}[\mathrm{X}]^{-} \\
& 2 \mathrm{QH}+\mathrm{R}_{n} \operatorname{SnX} \mathrm{~S}_{4-n} \xrightarrow{\Delta / \mathrm{CHCl}_{3}} \mathrm{R}_{n} \mathrm{X}_{4-n-2} \mathrm{Sn}(\mathrm{Q})_{2}+2 \mathrm{HX} \\
& 2 \mathrm{QNa}+\mathrm{R}_{n} \mathrm{SnX}_{4-n} \xrightarrow{\mathrm{C}_{6} \mathrm{H}_{6}} \mathrm{R}_{n} \mathrm{X}_{4-n-2} \operatorname{Sn}(\mathrm{Q})_{2}+2 \mathrm{NaX}
\end{aligned}
$$

In all cases the complexes have been purified by dissolving the crude products in chloroform and by adding to the filtered solutions diethyl ether or petroleum ether.

All the complexes, air- and thermally-stable, are soluble in chlorinated and acetone solutions. In the former they are stable for a long time, while upon prolonged standing in acetone solution they are found to decompose somewhat, producing insoluble products for which the IR spectra (see below) and the analytical data suggest an oxide nature.

2.1. IR spectra

The IR (Table 1) and far-IR spectra (Table 2) of the ligands employed and of the derivatives $1-24$ have been recorded both in nujol mull and in chloroform solutions. Several assignments for our complexes have been proposed on the basis of the previous reports on tin(IV) and organotin(IV) derivatives containing O-donor ligands [14] and of a comparison with the spectra of the starting tin(IV) and organotin(IV) acceptors and of the neutral 4-acyl-5-pyrazolones.

The main changes observed in the spectra of the complexes with respect to those of the neutral free donors are: the disappearance of the broad absorption due to strongly hydrogen-bonded $\nu(\mathrm{OH})$; a slight shift of the carbonyl stretching frequencies; a different pattern for the bands in the $1500-1600 \mathrm{~cm}^{-1}$ region due to $\nu(\mathrm{C}=\mathrm{C})$ and $\nu(\mathrm{C}=\mathrm{N})$. These changes suggest deprotonation of the ligand, involvement of both the carbonyl groups in the coordination of the $\operatorname{tin}(I V)$ atom, and formation of the six-membered chelate ring $\mathrm{Sn}-\mathrm{O}-\mathrm{C}$ -$\mathrm{C}-\mathrm{C}-\mathrm{O}$.

In the spectra carried out in chloroform solution it is also possible to observe several vibrations in the regions $3060-3020$ and $3000-2880 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{C}-$ $\mathrm{H})_{\text {aromatic }}$ and $\nu(\mathrm{C}-\mathrm{H})_{\text {aliphatuc }}$ respectively.

The compound 14 shows the $\nu(\mathrm{C}=\mathrm{O})$ at ca. 1588 cm^{-1} : this value is lower than those of all the other complexes and indicates a greater $\mathrm{Sn}-\mathrm{O}$ interaction. This fact is also supported by crystal data (see the diffraction study).

In the far-IR region the dimethyltin(IV)bis(4-acyl-5pyrazolonate) complexes exhibit a single strong band at
ca. $590 \mathrm{~cm}^{-1}$ assignable to $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$ [15]. The X-ray crystal structure determinations carried out previously on dimethyltin(IV) derivatives 1 and 13 [9a,c] indicated a non-linear $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ skeleton; however, in these compounds the $\nu_{\text {sym }}(\mathrm{Sn}-\mathrm{C})$ cannot be assigned because it is hidden under some ligand vibrations. In the diphenyltin(IV) complexes $2,8,14$ and 20 we assigned the strong absorptions at ca. 290 and ca. $245 \mathrm{~cm}^{-1}$ to $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$ and $\nu_{\text {sym }}(\mathrm{Sn}-\mathrm{C})$ respectively; these assignments are in agreement with those reported for the analogous (phenyl) 2_{2} bis(β-diketonate)tin(IV) [14] and for other diphenyltin(IV) compounds [16].

In the spectra of di(t-butyl)- and dicyclohexyltin(IV) derivatives, we assigned the respective strong sharp absorptions at ca. 420 and $425 \mathrm{~cm}^{-1}$ to $\nu_{\text {sym }}(\mathrm{Sn}-\mathrm{C})$ [17]. This is similar to those observed in the starting diorganotin(IV) halides and absent in the spectra of the free donors. It was not possible to identify with certainty the $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$ because of the presence of several overlapped ligand and $\mathrm{Sn}-\mathrm{O}$ vibrations. The dibenzyltin(IV) complexes exhibit two bands at ca. 540 and $455 \mathrm{~cm}^{-1}$ due to $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$ and $\nu_{\text {sym }}(\mathrm{Sn}-\mathrm{C})$ [18].

All the diorganotin(IV) complexes show at least two bands in the region $380-450 \mathrm{~cm}^{-1}$, most likely due to $\nu(\mathrm{Sn}-\mathrm{O})$ stretching vibrations $[14 \mathrm{~b}, 18,19]$. These absorptions are shifted downfield with respect to those observed (ca. 490-470 and $440-420 \mathrm{~cm}^{-1}$) in the spectra of dihalotin(IV) bis(β-diketonato) compounds 5 , 11, 17 and 23. This behaviour is explicable by the inductive effect due to substitution of the two organyl with two halide groups. It has been noted [14c,20] that a powerful electron-withdrawing group generally increases the strength of the $\mathrm{Sn}-\mathrm{O}$ bonds.

The $\nu(\mathrm{Sn}-\mathrm{Cl})$ for $5,11,17$ and 23 were detected at ca. $330-350 \mathrm{~cm}^{-1}$: some differences have been found between the spectra recorded in solid-state (nujol mull) and those in chloroform solutions. The former spectra generally exhibit a multiplicity of broad bands due to the presence of different cis- and trans-isomers [14d], whereas the latter spectra show only two strong sharp absorptions. The existence of both cis and trans configurations in the solid-state is likely; only one isomer seems to be present in CHCl_{3} solution, which probably adopts the cis configuration generally found in this class of dihalotin(IV) compounds [14c,21].

The medium or strong absorption generally found at ca. 170-180 cm^{-1} (compounds 1, 3-4, 6-7, 9-10, 12-13, 15-16, 18-19, 21-22 and 24) and at ca. 220 $\mathrm{cm}^{-1}(2,8,14$ and 20$)$ could be assigned to $\delta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})$ [16,22]. Moreover, the strong bands observed at ca. 220 cm^{-1} in the spectra of $5,11,17$ and 23 are characteristic of the $\delta(\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl})$ [14a].

2.2. NMR spectra

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the new derivatives 4 , $10,16,21,22$ and 24 in CDCl_{3} solution are listed in the

Experimental section and were assigned according to Ref. [9]. The data corroborate the conclusions previously reported [9]; in the ${ }^{1} \mathrm{H}$ spectra the $3-\mathrm{CH}_{3}$ proton resonance in the free ligands shifts upfield upon complexation, whereas in the ${ }^{13} \mathrm{C}$ spectra the carbon atom of the same group shifts downfield. A displacement for both the carbonyl groups was observed upon coordination: an upfield for $C(O)$, and a downfield displacement for $C(5)$ with the same order of magnitude of the $C(3)$ and $C(4)$ displacement; this trend can be correlated with the formation of $\mathrm{Sn}-\mathrm{O}$ bonds, which generate a decrease of electron density on the heterocyclic ring.

The main ${ }^{119} \mathrm{Sn}$ NMR parameters $\left({ }^{n} J_{\left({ }^{119}{ }^{119} \mathrm{Sn}^{1} \mathrm{H}\right)}\right.$, $\left.{ }^{n} J_{(119}{ }^{19}-1{ }^{13} \mathrm{C}\right)$ and ${ }^{119} \mathrm{Sn}$ chemical shift) of derivatives $\mathbf{1}-24$ in CDCl_{3} solution are listed in Table 3.

The coupling constants observed are of the same order as those reported in the literature for hexacoordinate diorganobis(chelate)tin(IV) derivatives [23].

The $\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})$ can be correlated to the magnitude of $\left.{ }^{1} J_{(119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$ and $\left.{ }^{2} J_{(119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ and structural predictions can be derived by applying the Lockhart [24] and Howard equations [25] (Table 3). The values of θ obtained for compounds 1 and 13, by using the Eq. (I) (also reported in Table 3) are significantly different from those previously observed for the samc compounds in the solid state [9a,f]. The best results are obtained from Eq. (II) which gives θ values nearer to those found in the crystals. Eq. (III) has been utilized to derive the θ values for the dibenzyl-, the dicyclo and the di-t-butyl. In all cases the data are indicative of a strongly distorted trans-octahedral or STB configuration.

The amount of s character in $\mathrm{Sn}-\mathrm{C}$ bonds can be related to tin-proton coupling constants through the well-known Holmes-Kaesz correlation [26]. In our dimethylbis(β-diketonate)tin(IV) complexes 1, 7, 13 and 19 , it would appear that the $\mathrm{Sn}-\mathrm{C}$ bonds have 47%, $48 \%, 43 \%$ and 46% s character respectively. On this basis we can conclude that, similar to $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}$ (acacH $=2$,4-pentanedione), in CDCl_{3} solution the bonds in the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ moieties of $1,7,13$ and 19 are essentially sp_{z} hybrids, whereas the $5 \mathrm{p}_{x}$ and $5 \mathrm{p}_{y}$ orbitals are likely to be involved in the four tin-oxygen bonds.

In the ${ }^{13} \mathrm{C}$ spectra of dibenzyl- and dicyclohexyltin(IV) compounds the $\left.{ }^{n} J_{(114}{ }^{10}{ }^{-13} \mathrm{C}\right)(n \geq 1)$ have also been detected. The poor solubility of the diphenyl compounds prevented observation of the tin satellites; however, the tin hexacoordination is confirmed by the magnitude of the values of $\left.{ }^{2 / 3 / 4} J_{(199} \mathrm{Sn}_{-}{ }^{13} \mathrm{C}\right)$ consistent with octahedral tin(IV) species [23].

The following trends, in accordance with that previously described in literature [27], have always been observed:
$\left.\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{Q})_{2}:{ }^{3} J_{(199} \mathrm{Sn}-^{-19} \mathrm{C}\right)>{ }^{2} J_{\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)}>{ }^{4} J_{\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)}$
Table 1
IR data (cm^{-1}) for the ligands and compounds 1-24

Compound	State	Concentration $\left(\mu \mathrm{g} \mathrm{cm}^{-3}\right)$	$\nu(\mathrm{C}-\mathrm{H})$	1600-1450	Other data ${ }^{\text {a }}$
Q'H	Nujol			1599s, 1570sh, 1560s, 1554s, 1536m, sh, 1498s	3500-2700br
	CHCl_{3}	4.0	3037s, 3020m, 3012m, 2993w	1608s, 1563s, $1525 \mathrm{sh}, 1518 \mathrm{~m}, 1500 \mathrm{~m}$	2800-2700br
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3079w, 3060w, 3039w, 3021w	$1604 \mathrm{~s}, 1594 \mathrm{~s}, 1582 \mathrm{~s}, 1569 \mathrm{~s}, 1531 \mathrm{~s}, 1494 \mathrm{~s}$	
	CHCl_{3}	4.0	3067sh, 2996m, 2935w	$1601 \mathrm{~s}, 1586 \mathrm{~s}, 1570 \mathrm{~s}, 1560 \mathrm{sh}, 1532 \mathrm{~s}, 1528 \mathrm{~s}$, 1523sh, 1507sh, 1500 s	
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3063w, 3047w, 3026w	1606s, 1598s, 1586s, 1573s, 1555m, 1532s, 1498s	
	CHCl_{3}	5.0	3018m, 2989w	$1607 \mathrm{~s}, 1587 \mathrm{~m}, 1574 \mathrm{~m}, 1560 \mathrm{~m}, 1529 \mathrm{~m}, 1527 \mathrm{~m}, 1505 \mathrm{sh}$, 1500 m	
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3081w, 3050w, 3039w, 3922w	1598s, 1593s, 1586sh, 1562s, 1528s, 1503m, 1492s	
	CHCl_{3}	3.3	3033m, 2986w, 2933w	$1600 \mathrm{~s}, 1594 \mathrm{~s}, 1584 \mathrm{~m}, 1527 \mathrm{~m}, 1552 \mathrm{~s}, 1531 \mathrm{~m}, 1523 \mathrm{~m}$, 1519m	
$\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3078w, 3054w, 3044w, 3025w	1599s, $1592 \mathrm{~s}, 1581 \mathrm{~s}, 1567 \mathrm{~s}, 1564 \mathrm{~s}, 1532 \mathrm{~s}, 1497 \mathrm{~m}$	
	CHCl_{3}	4.0	$2995 \mathrm{~m}, 2930 \mathrm{~m}, 2852 \mathrm{~m}$	1604s, 1597s, 1585m	
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3080sh, 3064w, 3048w, 3032w	1598sh, 1594s, 1556s, $1548 \mathrm{sh}, 1522 \mathrm{~s}, 1500 \mathrm{~s}, 1483 \mathrm{~s}$	
	CHCl_{3}	4.0	2997m, 2933w, 2850w	1600s, 1586s, $1575 \mathrm{~s}, 1552 \mathrm{~s}$, 1513sh, 1500 s	
$\left(\mathrm{C}_{4} \mathrm{H}_{9}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	Nujol		3073sh, 3057 m	$1614 \mathrm{~m}, 1602 \mathrm{~s}, 1593 \mathrm{~s}, 1582 \mathrm{~s}, 1567 \mathrm{sh}, 1562 \mathrm{~s}$, 1538 s , 1527s, 1495 m	
6	CHCl_{3}	4.5	3035m, 2983w	$1601 \mathrm{~s}, 1595 \mathrm{~s}, 1584 \mathrm{~m}, 1568 \mathrm{~s}, 1540 \mathrm{~m}, 1526 \mathrm{~m}, 1521 \mathrm{~m}$, $1507 \mathrm{~m}, 1500 \mathrm{~m}$	
Q ${ }^{\prime} \mathrm{H}$	Nujol			1622s, 1614s, $1609 \mathrm{~s}, 1592 \mathrm{~s}, 1580 \mathrm{~s}, 1574 \mathrm{~s}, 1567 \mathrm{~s}, 1557 \mathrm{~s}$, $1538 \mathrm{~m}, 1494 \mathrm{~s}$	3530-2250br
	CHCl_{3}	4.0	2993m, 2930m, 2882w	1623s br, 1596s, 1568s br	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		3081w, 3064w, 3044w	1600s, 1589s, 1573s, 1534s, 1501sh, 1488 s	
	CHCl_{3}	4.5	2984m, 2884w	1606s, 1594s, 1582s, 1539 m	
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		$3085 w, 3066 w, 3050 w, 3041 w,$ $3023 w$	$1601 \mathrm{~s}, 1590 \mathrm{~s}, 1575 \mathrm{~s}, 1564 \mathrm{~s}, 1558 \mathrm{sh}, 1545 \mathrm{~s}, 1534 \mathrm{~s}$, 1500sh, 1483s	
	CHCl_{3}	4.0	2991 m, 2930m	1619s, $1597 \mathrm{~s}, 1575 \mathrm{~s}$, 1535 s , 1500sh	
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		3078w, 3061w, 3049w, 3022w	$1611 \mathrm{~s}, 1600 \mathrm{~s}, 1591 \mathrm{~s}, 1573 \mathrm{~s}, 1539 \mathrm{~s}, 1529 \mathrm{~s}, 1503 \mathrm{sh}$, 1482s	
	CHCl_{3}	4.5	3060sh, 3037m, $3011 \mathrm{~m}, 2988 \mathrm{~m}, 2929 \mathrm{w}$	1611s, 1578s, 1535s, 1518m, 1500sh	
$\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		3077w, 3058w, 3045w	1597s, 1592s, 1566s, 1544s, 1530s, 1507sh, 1487s	
10	CHCl_{3}	4.5	3034m, 3022m, 3013m, 2983w, 2921w	1607s, 1595s, 1583s, 1532s	
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		3076w, 3064w, 3047w	1598s, 1592s, 1566s, 1544s, 1530s, 1507sh, 1487s	
11	CHCl_{3}	4.0	3037m, 3012m, 2996w, 2882w	1606s, $1596 \mathrm{~s}, 1586 \mathrm{~s}, 1563 \mathrm{~s}, 1540 \mathrm{~s}, 1522 \mathrm{~m}, 1511 \mathrm{~m}$, 1495m	
$\left({ }^{1} \mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	Nujol		3077w, 3063w, 3043w, 3028w	1606s, 1592 s , 1580s, 1545 s , 1533s, 1492s	
12	CHCl_{3}	3.9	3034m, 3018m, 2995m, 2890w, 2885w	1608s, 1595s, 1583s, 1532s	
$\mathrm{Q}_{\mathrm{Br}} \mathrm{H}$	Nujol			$1637 \mathrm{sh}, 1617 \mathrm{~s}, 1591 \mathrm{~s}, 1583 \mathrm{~s}, 1565 \mathrm{~s}, 1555 \mathrm{~s}, 1515 \mathrm{~s}$, 1498 s	3300-2000br
	CHCl_{3}	4.2	3037m, 3029m, 3022m, 3014m, 2993w	$1607 \mathrm{~s}, 1591 \mathrm{~s}, 1559 \mathrm{~s}, 1523 \mathrm{w}, 1518 \mathrm{~m}, 1514 \mathrm{~m}, 1500 \mathrm{~m}$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{BR}}\right)_{2}$	Nujol		3078w, 3062w, 3042w	$1604 \mathrm{~s}, 1596 \mathrm{~s}, 1587 \mathrm{~s}, 1580 \mathrm{~s}, 1560 \mathrm{~s}, 1529 \mathrm{~s}, 1498 \mathrm{sh}$, 1489 s	

$\begin{aligned} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CHCl}_{3} \\ & \mathrm{Nujol} \end{aligned}$	3.6
$\begin{aligned} & 14 \\ & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CHCl}_{3} \\ & \text { Nujol } \end{aligned}$	3.4
$\begin{aligned} & 15 \\ & \left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{BI}}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CHCl}_{3} \\ & \text { Nujol } \end{aligned}$	3.3
$\begin{aligned} & 16 \\ & \mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2} \\ & 17 \\ & \left({ }^{\prime} \mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2} \\ & 18 \\ & \mathrm{Q}_{\mathrm{A}} \mathrm{H} \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2} \end{aligned}$	CHCl_{3} Nujol CHCl_{3} Nujol CHCl_{3} Nujol CHCl_{3} Nujol	6.0 3.8 6.0 4.5
$\begin{aligned} & 19 \\ & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CHCl}_{3} \\ & \text { Nujol } \end{aligned}$	4.4
$\begin{aligned} & 20 \\ & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2} \\ & \mathrm{l}^{21}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2} \end{aligned}$	CHCl_{3} Nujol CHCl_{3} Nujol	4.4 4.4
$\begin{aligned} & \mathbf{2 2} \\ & \mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2} \\ & \mathbf{2 3} \\ & \left({ }^{\circ} \mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{A}\right)_{2} \\ & \mathbf{2 4} \end{aligned}$	CHCl_{3} Nujol CHCl_{3} Nujol CHCl_{3}	4.0 4.0 4.4

Table 2
Far-IR data (cm^{-1}) for the ligandis and compounds $1-24$

Table 2 (continued)

Compound	State	$\nu(\mathrm{Sn}-\mathrm{C})$	$\nu(\mathrm{Sn}-\mathrm{O})$	$\nu(\mathrm{Sn}-\mathrm{Cl})$	$\delta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})$	Other data
14	Nujol	$300 \mathrm{~m}, 292 \mathrm{~m}$	$453 \mathrm{~m}, 442 \mathrm{~m}$		225 m	$553 \mathrm{br}, 542 \mathrm{~s}, 395 \mathrm{~m}, 385 \mathrm{~m}, 354 \mathrm{w}, 324 \mathrm{w}$
					203m	$280 \mathrm{~m}, 247 \mathrm{~m}$
	CHCl_{3}	$297 \mathrm{~m}, 285 \mathrm{br}$	460s br, 449s		225 m	$575 \mathrm{~m}, 510 \mathrm{~m}, 389 \mathrm{~m}, 337 \mathrm{w} .247 \mathrm{~m}, 171 \mathrm{vw}$
					200br	
15	Nujol	456br, 432s	450s. 387 s		174 m	572w, 556w, 512m. $330 \mathrm{w}, 282 \mathrm{w}, 265 \mathrm{~m}$
						$213 \mathrm{~m}, 197 \mathrm{~m}$
	CHCl_{3}	$456 \mathrm{br}, 440 \mathrm{br}$	$440 \mathrm{br}, 388 \mathrm{br}$		171m	$595 \mathrm{w}, 567 \mathrm{w}, 552 \mathrm{w}, 510 \mathrm{~m}, 329 \mathrm{~m}, 279 \mathrm{~m}$ $244 \mathrm{~m}, 211 \mathrm{~m}$
16	Nujol	421s, 382 s	434s, 370 s		171m	554m, $542 \mathrm{~m}, 511 \mathrm{~m}, 334 \mathrm{w}, 332 \mathrm{w}, 290 \mathrm{~m}$
						$273 \mathrm{~m}, 203 \mathrm{~m}$
	CHCl_{3}	442s, 385br	440s, 385 s		168 m	552s, $511 \mathrm{~m}, 326 \mathrm{~m}, 285 \mathrm{~m}, 269 \mathrm{~m}, 247 \mathrm{w}$
						218m
17	Nujol		482s, 465 m	357s, 338m		581w, 544w, 512m, 385sh, 298w, 282w
			396 m			230m. 206w
	CHCl_{3}		479s, 395s	353br, 340sh		$583 \mathrm{~m}, 517 \mathrm{~m}, 508 \mathrm{~m}, 278 \mathrm{~m}, 224 \mathrm{~m} .221 \mathrm{~m}$
18	Nujol	430sh, 400s	436s, 486s		169 m	511m, 352w, 326w, 279w, 267w, 255w
						247w, 203w
	CHCl_{3}	$440 \mathrm{br}, 390 \mathrm{br}$	443s, 394s		165s	$564 \mathrm{w}, 511 \mathrm{~m}, 327 \mathrm{w}, 302 \mathrm{w}, 279 \mathrm{~m}, 254 \mathrm{~m}$
$\mathrm{Q}_{\mathrm{A}} \mathrm{H}$	Nujol					$543 \mathrm{w}, 530 \mathrm{w}, 512 \mathrm{w}, 501 \mathrm{w}, 445 \mathrm{~m}, 327 \mathrm{~m}$
						280w, 266w
	CHCl_{3}					$\begin{aligned} & 540 \mathrm{br}, 533 \mathrm{w}, 519 \mathrm{w}, 506 \mathrm{w}, 443 \mathrm{w}, 420 \mathrm{w} \\ & 326 \mathrm{w}, 280 \mathrm{w} \end{aligned}$
19	Nujol	589s	$462 \mathrm{~s}, 434 \mathrm{~s}$		179 m	$541 \mathrm{~m}, 535 \mathrm{~m}, 518 \mathrm{~m}, 511 \mathrm{~m}, 349 \mathrm{~m}, 329 \mathrm{~s}$
						$310 \mathrm{~s}, 281 \mathrm{~m}, 260 \mathrm{w}, 247 \mathrm{vw}, 225 \mathrm{~m}, 204 \mathrm{~m}$
	CHCl_{3}	585m	$448 \mathrm{br}, 398 \mathrm{~m}$		171s	$539 \mathrm{~s}, 511 \mathrm{~s}, 342 \mathrm{~m}, 325 \mathrm{~m}, 302 \mathrm{~m}, 280 \mathrm{~m}$
						$247 \mathrm{~m}, 224 \mathrm{~m}$
20	Nujol	279s, 266s	470br, 463s		225 m	$538 \mathrm{~m}, 383 \mathrm{~m}, 339 \mathrm{~m}, 303 \mathrm{~m}, 203 \mathrm{~m}, 176 \mathrm{~m}$
		255 m	446s, 419w			
	CHCl_{3}	278s, 267s	449s, 419w		225 m	$539 \mathrm{~s}, 510 \mathrm{~s}, 498 \mathrm{w}, 384 \mathrm{w}, 247 \mathrm{~m}, 200 \mathrm{br}$
21	Nujol	443 m	456s, 396s		170 m	$547 \mathrm{~m} .514 \mathrm{~m}, 480 \mathrm{w} .351 \mathrm{w}, 326 \mathrm{w}, 303 \mathrm{w}$
						$260 \mathrm{~m}, 247 \mathrm{~m}$
	CHCl_{3}	420sh	$456 \mathrm{~s}, 397 \mathrm{~m}$		169 m	$\begin{aligned} & 538 \mathrm{~m}, 510 \mathrm{~m}, 481 \mathrm{~m}, 347 \mathrm{~m}, 316 \mathrm{~m}, 302 \mathrm{~m} \\ & 279 \mathrm{~m}, 244 \mathrm{~m} \end{aligned}$
22	Nujol CHCl_{3}	420m, 390 s	440s, 390s		168 m	$538 \mathrm{~m}, 510 \mathrm{~m}, 275 \mathrm{~m}, 240 \mathrm{w}, 215 \mathrm{~m}$
		$421 \mathrm{~m}, 385 \mathrm{w}$	$449 \mathrm{~s}, 396 \mathrm{~m}$		169s	$\begin{aligned} & 537 \mathrm{~s}, 510 \mathrm{~s}, 478 \mathrm{~m}, 320 \mathrm{br}, 305 \mathrm{br}, 268 \mathrm{~m} \\ & 247 \mathrm{~m}, 214 \mathrm{~s} \end{aligned}$
23	Nujol		474m, 420m	352s, 334s		$\begin{aligned} & 549 \mathrm{~s}, 525 \mathrm{w}, 501 \mathrm{~m}, 398 \mathrm{w}, 375 \mathrm{~m}, 280 \mathrm{~m} \\ & 247 \mathrm{~m}, 22 \mathrm{~m} \end{aligned}$
			474m, 420 m	340 s br		550s, $542 \mathrm{~s}, 500 \mathrm{~s}, 279 \mathrm{~m}, 225 \mathrm{~s}$ br
24	Nujol CHCl_{3}	420m, 398s	430s, 398s		160s	$540 \mathrm{~m}, 509 \mathrm{~m}, 302 \mathrm{~m}, 278 \mathrm{~m}, 242 \mathrm{w}$
		434s, 395s	450s, 395 s		165s	$\begin{aligned} & 534 \mathrm{~s}, 510 \mathrm{~s}, 478 \mathrm{~m}, 342 \mathrm{~m}, 302 \mathrm{~m}, 279 \mathrm{~m} \\ & 248 \mathrm{~m}, 225 \mathrm{~m} \end{aligned}$

$$
\begin{aligned}
& \left.>{ }^{4} J_{(119}{ }^{11} \mathrm{Sn}_{-}{ }^{13} \mathrm{C}\right) \\
& \mathrm{Cy}_{2} \mathrm{Sn}(\mathrm{Q})_{2}:{ }^{1} J_{\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)}>^{3} J_{(199}{\left.\mathrm{Sn}-{ }^{13} \mathrm{C}\right)}>^{2} J_{\left({ }^{(19} \mathrm{Sn}^{13} \mathrm{C}\right)} \\
& \left.>{ }^{4} J_{(119} \mathrm{Sn}_{\mathrm{n}}{ }^{13} \mathrm{C}\right)
\end{aligned}
$$

The ${ }^{119} \mathrm{Sn}$ NMR data, consistent with the hexacoordinate structure proposed in Ref. [28], also give further information. For example, when more stericallyhindered groups, such as t-butyl, or more electronwithdrawing groups, such as the phenyls or halogens, are linked to the metal center, the existence of isomers
is suggested by the presence of more than one ${ }^{119} \mathrm{Sn}$ resonance.

In the ${ }^{1} H$ NMR spectra of the dihalotin(IV) derivatives, four different signals for the $3-\mathrm{CH}_{3}$ groups were observed, probably due to the four geometrical isomers shown in Fig. 2.

In the ${ }^{115} \mathrm{Sn}$ NMR spectra, only three signals were found, with intensity ratio of ca. $1: 2: 1$, probably indicating the coincidence of two cis isomers and a statistical distribution of all four isomers.

It is well known $[23,28]$ that the extent of the chemical shift $\delta\left({ }^{119} \mathrm{Sn}\right)$ of complexes having the same coordination number depends primarily on the types of sub-

Table 3
${ }^{119} \mathrm{Sn}$ NMR data (CDCl_{3} solution) ${ }^{\text {a }}$ of derivatives $1-24$ and structural predictions by the Lockhart [24] and Howard equations

Compound		${ }^{2} J(\mathrm{Sn}-\mathrm{H})$	${ }^{3} J(\mathrm{Sn}-\mathrm{H})$	${ }^{1} J(S n-C)$	${ }^{2} J(\mathrm{Sn}-\mathrm{C})$	${ }^{3} J(\mathrm{Sn}-\mathrm{C})$	${ }^{4} J(\mathrm{Sn}-\mathrm{C})$	$\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})(\mathrm{deg})$			${ }^{119} \mathrm{Sn} \delta(-\mathrm{ppm})$
								Eq. (I)	Eq. (II)	Eq. (III) ${ }^{\text {b }}$	
$\mathrm{Me}_{2} \operatorname{Sn}\left(Q^{\prime}\right)_{2}$	1	103		938				168.2	159	178.3	319
$\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	2				60	90	19				481, 486, 501br
$\mathrm{Bz}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	3	124		817		50	31			160.3	451
$\mathrm{Cy}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	4			791	35	130	<5			155.5	431
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	5										630,633, 635
${ }^{1} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	6		133	819						160.5	456, 469
$\mathrm{Me}_{2} \mathrm{Sn}\left(Q^{\prime \prime}\right)_{2}$	7	104		960				170.3	161.0	175.4	321
$\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	8				59	89	19				483, 487
$\mathrm{Bz}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	9	125		819		53	31			160.5	449
$\mathrm{Cy}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	10			780	35	130	<5			155.0	433
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	11										631, 633, 636
${ }^{1} \mathbf{B u} \mathbf{2}_{2} \mathrm{Su}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	12		133	835						163.4	456, 463
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	13	93		944				149.9	159.6	178.2	316
$\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	14				59	93	18				481, 484, 486
$\mathrm{Bz}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	15	122		797		51	31			156.6	451
$\mathrm{Cy}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	16			816	35	128	<5			160.0	428
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	17										629,633,636
${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	18		135	790						155.4	453
$\mathrm{Me}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	19	101		943				164.3	159.5	177.4	321
$\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	20				59	90	18				484, 493
$\mathrm{Bz}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	21	124		796		52	31			156.4	457
$\mathrm{Cy}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	22			801	36	133	<5			157.3	432
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	23										$634,638,641$
${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	24		135	820						160.7	457

${ }^{\mathrm{a}} J$ in $\mathrm{Hz} ;{ }^{\mathrm{b}} \mathrm{Eq}$. (I): $\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})=0.0161\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)\right]^{2}-1.32\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)\right]+133.4[24$;
Eq. (II): $\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})=\left(\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)\right]+875\right) / 11.4$ [24]; Eq. (III): $\theta(\mathrm{C}-\mathrm{Sn}-\mathrm{C})=0.178\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)\right]+14.74$ [25].
stituent on the tin atom. The trend observed in our derivatives $1-24$ is

$$
\begin{aligned}
-\delta_{\mathrm{Cl}_{2} \mathrm{SnQ}_{2}} & >-\delta_{\mathrm{Ph}_{2} \mathrm{SnQ}_{2}}>-\delta_{\mathrm{Bz}_{2} \mathrm{SnQ}_{2}}>-\delta_{\mathrm{Bu}_{2}^{\prime} \mathrm{SnQ}_{2}} \\
& >-\delta_{\mathrm{Cy}_{2} \mathrm{SnQ}_{2}}>-\delta_{\mathrm{Me}_{2} \mathrm{SnQ}_{2}}
\end{aligned}
$$

and agrees perfectly with most of the trends described in literature [23].

2.3. ${ }^{119}$ Sn Mössbauer data

Some complexes have been investigated by Mössbauer spectroscopy. The isomer shift (IS) quadrupole
splitting, (QS) average linewidth at half maximum $\Gamma \pm$ and calculated $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle are reported in Table 4.

The IS value decreases on going from four to six-coordination species and increases with the covalent character of the tin-ligand bonds. For the compounds examined, the IS value is typical of quadrivalent tin in inorganic and organometallic derivatives. The complexes reported here are all potentially octahedral with four oxygen atoms bonded to the tin. The two complexes $\mathrm{Cl}_{2} \mathrm{Sn}(\mathrm{Q})_{2} 5$ and $23\left(\mathrm{Q}=\mathrm{Q}^{\prime}\right.$ or $\left.\mathrm{Q}_{\mathrm{A}}\right)$ show IS values ($0.24 \mathrm{~mm} \mathrm{~s}^{-1}$) less positive than the average

Table 4
${ }^{119}$ Sn Mössbauer data

Compound	No.	$\begin{aligned} & \text { IS }^{\mathrm{a} . \mathrm{b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{QS}^{\mathrm{b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \Gamma \pm^{\mathrm{b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{Sn}-\mathrm{C}^{\mathrm{c}} \\ & (\mathrm{deg}) \end{aligned}$
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	2	0.81	2.42	0.98	117
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	5	0.24	0	1.10	
$\left({ }^{\circ} \mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	6	1.60	3.87	0.80	157
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	7	1.24	4.14	0.78	180
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	9	1.29	3.45	0.89	141
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	13	1.32	3.97	0.83	162
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	14	1.15	3.78	0.92	173
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	15	1.40	3.42	1.02	140
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	19	1.26	3.91	1.00	159
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	20	0.84	2.37	0.82	116
$\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	22	1.53	3.90	0.86	158
$\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$	23	0.24	0	1.23	

${ }^{a}$ With respect to a R.T. spectrom of $\mathrm{CaSnO}_{3} \cdot{ }^{b} \pm 0.5 \mathrm{~mm} \mathrm{~s}^{-1} .{ }^{\text {c }}$ Calculated by using the literature partial quadrupole splittings: $[\mathrm{Ph}]=-0.95$ $\mathrm{mm} \mathrm{s}^{-1} ;[\mathrm{Alk}]=-1.03 \mathrm{~mm} \mathrm{~s}^{-1}$.
reviewed value $0.37(0.08) \mathrm{mm} \mathrm{s}^{-1}$ reported for octahedral $\mathrm{Cl}_{4} \mathrm{SnO}_{2}$-type complexes [29], in consonance with the increasing electronegativity of the oxygen with re-
spect to the chlorine. The decrease in the s-electron density at the tin nucleus is observable in the series $\mathrm{R}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}(\mathrm{R}=\mathrm{Cl}, \mathrm{Ph}, \mathrm{Me}, \mathrm{Cy})$ and in the pairs of

Table 5
Atomic coordinates and isotropic displacement parameters with their e.s.d.s in parentheses

Atom	x	y	z	$B_{\text {eq }}$
$\overline{\mathrm{Sn}}$	0.3367 (1)	0.13933 (2)	0.4333(1)	3.37 (3)
$\mathrm{Br}(1)$	$0.7200(3)$	$0.1458(1)$	-0.0965(2)	9.0 (1)
$\mathrm{Br}(51)$	-0.2778(2)	0.30733 (4)	-0.0776(2)	$6.8(1)$
O(1)	$0.4723(8)$	0.0985(2)	0.5528(8)	3.8(3)
$O(2)$	0.4427(9)	0.1304(2)	$0.3090(8)$	4.3 (3)
O(51)	$0.2400(8)$	0.1446 (2)	0.5592(8)	3.8(3)
O(52)	$0.1914(8)$	0.1840 (2)	0.3165(9)	4.2 (3)
N(1)	0.599(1)	$0.0456(2)$	0.581(1)	$3.7(3)$
N (2)	0.663(1)	$0.0256(3)$	0.521(1)	4.4 (4)
N(51)	0.0300(9)	$0.1444(3)$	0.567(1)	3.6 (3)
N(52)	-0.0987(9)	0.1612 (3)	0.501(1)	$4.2(4)$
C(3)	$0.647(1)$	0.0440(3)	$0.419(1)$	4.1 (5)
C(4)	0.570(1)	$0.0777(3)$	$0.406(1)$	3.44 (4)
C(5)	0.540 (1)	$0.0760(3)$	0.515(1)	3.3 (4)
C(6)	0.609 (1)	0.0319(3)	0.703(1)	3.8 (4)
C(7)	$0.571(2)$	$0.0530(4)$	0.780 (1)	$5.2(6)$
C(8)	$0.586(2)$	$0.0385(4)$	0.898(2)	$5.9(6)$
C(9)	$0.635(2)$	$0.0036(4)$	0.935(2)	5.66 (6)
C(10)	$0.671(2)$	-0.0164(4)	0.858(2)	5.66 (6)
C(11)	0.658(1)	-0.0030(3)	0.739(1)	$4.6(5)$
C(12)	$0.700(2)$	$0.0284(4)$	$0.332(2)$	$6.2(7)$
C(13)	$0.527(1)$	0.1050(3)	$0.314(1)$	$3.9(4)$
C(14)	$0.575(1)$	0.1101(3)	$0.213(1)$	4.4 (5)
C(15)	0.485 (2)	$0.1216(4)$	$0.091(1)$	5.0(5)
C(16)	$0.525(2)$	$0.1317(4)$	-0.002(2)	6.47 (
C(17)	0.666 (2)	$0.1310(4)$	$0.032(2)$	5.57 (7)
C(18)	$0.757(2)$	$0.1199(4)$	$0.150(2)$	5.4 (6)
C(19)	0.715(1)	$0.1097(3)$	$0.243(1)$	4.4(5)
C(20)	$0.188(1)$	$0.1007(4)$	$0.319(2)$	5.2(6)
C(21)	$0.124(2)$	$0.1033(6)$	$0.184(2)$	$7.7(8)$
$\mathrm{C}(22)$	$0.027(3)$	0.0770(9)	$0.111(3)$	12(1)
C(23)	-0.006(3)	0.0495(9)	$0.169(4)$	13(1)
C(24)	0.057(2)	$0.0462(6)$	$0.303(4)$	$11(1)$
C(25)	$0.154(2)$	$0.0723(4)$	$0.379(2)$	$6.7(7)$
C(26)	$0.477(1)$	0.1820 (3)	$0.527(1)$	3.6 (4)
C(27)	0.438(1)	$0.2134(3)$	$0.571(1)$	4.3(4)
C(28)	0.529(2)	$0.2409(4)$	$0.632(2)$	$5.446)$
C(29)	$0.666(1)$	$0.2377(4)$	$0.654(1)$	$4.7(5)$
C(30)	$0.704(1)$	$0.2068(4)$	$0.615(1)$	5.1 (5)
C(31)	$0.615(1)$	$0.1794(4)$	0.554(1)	4.0 (4)
C(53)	-0.095(1)	$0.1819(3)$	$0.411(1)$	3.6 (4)
C(54)	0.039(1)	$0.1803(3)$	$0.411(1)$	3.3 (4)
C(55)	$0.115(1)$	$0.1554(3)$	$0.513(1)$	3.2 (4)
C(56)	$0.051(1)$	0.1162 (3)	$0.657(1)$	3.8 (4)
C(57)	$0.177(2)$	$0.1005(5)$	0.731(2)	$6.7(7)$
C(58)	$0.188(2)$	0.0720(5)	0.810(2)	8.1 (8)
C(59)	0.079(2)	0.05766)	0.822(2)	$8.4(8)$
C(60)	-0.043(2)	$0.0736(8)$	0.749(2)	11(1)
C(61)	-0.063(2)	$0.1028(7)$	0.669(2)	10(1)
C(62)	-0.222(1)	0.2016 (3)	$0.327(1)$	$4.7(5)$
C(63)	0.084(1)	$0.1948(3)$	$0.325(1)$	$3.2(4)$
C(64)	$0.002(1)$	$0.2234(3)$	$0.228(1)$	$3.4(4)$
C(65)	-0.030(2)	$0.2183(4)$	0.099(1)	6.3 (6)
$\mathrm{C}(66)$	-0.110(2)	$0.2432(5)$	0.008(2)	$7.5(7)$
C(67)	-0.159(1)	0.2736(3)	$0.048(1)$	$4.7(5)$
C(68)	-0.117(1)	$0.2809(3)$	$0.174(1)$	4.2 (5)
C(69)	-0.038(1)	$0.2550(3)$	$0.266(1)$	$3.5(4)$

$B_{\text {eq }}=(4 / 3) \sum(i j)[a(i) d(j) b(i j)]$.

Fig. 2. The cis- and trans-isomers possible for our $\mathrm{R}_{2} \mathrm{SnQ}_{2}$ complexes.
complexes $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$ and $\mathrm{R}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}(\mathrm{R}=\mathrm{Me}$ and Ph); this is consistent with the electronegativity trend and with the decreasing inductive effect of Ph in comparison with Me.

The $\mathrm{Cl}_{2} \mathrm{Sn}(\mathrm{Q})_{2}$ complexes show a single resonance line typical of a cubic symmetry around the tin. The large valuc of $\Gamma \perp$ for $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$ indicates an unresolved QS due to a distortion from ideal octahedral symmetry. The QS value has been widely used to distinguish between cis or trans- R_{2} isomers in $\mathrm{R}_{2} \mathrm{Sn}$ complexes [30,31]. The QS values for derivatives 6,7, $9,13,14,15,19$ and 22 are consistent with a trans-R configuration; instead, a cis- R_{2} distorted arrangement can be attributed to $\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{Q})_{2}$ complexes 2 and 20 ($\mathrm{Q}=\mathrm{Q}^{\prime}$ and Q_{A}). Using the Parish relationship between QS and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle [31], the latter have been calculated. An accentuated distortion from linearity has been inferred in the $\mathrm{Bz}_{2} \mathrm{Sn}(\mathrm{Q})_{2}$ derivatives 9 and 15 .

2.4. Diffraction study of $\left[P h_{2} \operatorname{Sn}\left(Q_{B r}\right)_{2}\right] 14$

The crystal structure of the title compound consists of discrete molecules without any crystallographicallyimposed symmetry. Atomic coordinates along with isotropic equivalent displacement parameters $B_{\text {eq }}$ are shown in Table 5. Hydrogen atom positions are omitted and available from the Cambridge Crystallographic Data Base. Fig. 3 shows a view of the molecular structure with H atoms omitted for clarity. Bond distances and angles are given in Tables 6 and 7 respectively.

The metal is six-coordinate with two ($\mathrm{Q}_{\mathrm{Br}}^{-}$) ligands and two phenyl groups. Each ligand chelates the metal through two oxygen atoms asymmetrically, $\mathrm{Sn}-\mathrm{O}(1)=$ $2.12(1) \AA$ and $\mathrm{Sn}-\mathrm{O}(2)=2.223(8) \AA$ for one ligand and $\mathrm{Sn}-\mathrm{O}(51)=2.143(7) \AA$ and $\mathrm{Sn}-\mathrm{O}(52)=2.26(1) \AA$ for the other ligand. The system is distorted octahedral whose geometry is determined by the ligand asymmetry. This distortion is characterized by a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ axis
less than 180°. This folding is towards the longer $\mathrm{Sn}-\mathrm{O}$ bonds. In our case $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ is $173.0(7)^{\circ}$; the angles in the equatorial plane are $\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}(51)=91.9(3)^{\circ}$ (the primary oxygens bound to tin) and $\mathrm{O}(2)-\mathrm{Sn}-\mathrm{O}(52)=$ $98.6(3)^{\circ}$ (the secondary oxygens bound to tin). As mentioned above, the $\mathrm{Ph}-\mathrm{Sn}-\mathrm{Ph}$ axis is projected towards the secondary oxygens. The $\mathrm{Sn}-\mathrm{C}$ bonds are similar to those normally found in diorganotin compounds.

The ($\mathrm{Q}_{\mathrm{Br}}^{-}$) ligands show the pyrazolonate ring to be planar. An analysis, based on the Cremer and Pople [32] ring puckering coordinates, shows that the two chelate rings have different total puckering amplitudes ($Q_{\mathrm{T}}[\mathrm{Sn}-$ $\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{O}(2)]=0.208(8)$ and $Q_{\mathrm{T}}[\mathrm{Sn}-$ $O(51)-C(55)-C(54)-C(63)-O(52)]=0.334(8) \AA)$ even if their conformation is similar, both being half-chair with a local pseudo two-fold axis running along the midpoints of the $\mathrm{Sn}-\mathrm{O}(1)$ and $\mathrm{C}(4)-\mathrm{C}(13)$ bonds in one ring, and the midpoints of the $\mathrm{Sn}-\mathrm{O}(51)$ and $\mathrm{C}(54)-$ $\mathrm{C}(63)$ bonds in the other. These pseudo axes are therefore symmetrically situated.

The primary oxygens ($O(1)$ and $O(51)$) are in close contact with the ortho hydrogens (attached to $\mathrm{C}(7)$ and $\mathrm{C}(57)$), as found previously [9f] (in this complex $\mathrm{O}(1) \cdots \mathrm{H}(1)=2.24(2) \AA$ and $\mathrm{O}(51) \cdots \mathrm{H}(18)=$ $2.25(2) \AA$). The planarity of the corresponding phenyl groups [$C(6)-\ldots C(11)$] and $[C(56)-\ldots-C(61)]$ with respect to the pyrazolonate rings is responsible for this feature (the dihedral angle between the rings [$\mathrm{N}(1)$ -$N(2)-C(3)-C(4)-C(5)]$ and $[C(6) \ldots-C(11)]$ is $11.7(4)^{\circ}$ and between the rings $[\mathrm{N}(51)-\mathrm{N}(52)-\mathrm{C}(53)-$ $\mathrm{C}(54)-\mathrm{C}(55)]$ and $[\mathrm{C}(56)---\mathrm{C}(61)]$ is $\left.15.9(5)^{\circ}\right)$.

Similar compounds were recently described by our group [9a,c,f], namely, ${ }^{'} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}, \mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$,

Fig. 3. A view of the molecular structure of $\mathrm{Ph}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2} 14$ including anisotropic displacements parameters (H atoms are omitted).

Table 6
Bond lengths (\AA) with e.s.d.s in parentheses

Coordination sphere	
$\mathrm{Sn}-\mathrm{O}(1)$	2.12(1)
$\mathrm{Sn}-\mathrm{O}(2)$	2.223 (8)
Sn -O(51)	2.143 (7)
Sn -O(52)	2.26(1)
$\mathrm{Sn}-\mathrm{C}(20)$	2.11(2)
$\mathrm{Sn}-\mathrm{C}(26)$	2.11(1)
Rest of the molecule	
$\mathrm{Br}(1)-\mathrm{C}(17)$	1.89(2)
$\mathrm{Br}(51)-\mathrm{C}(67)$	1.91 (2)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.30(1)
$\mathrm{O}(2)-\mathrm{C}(13)$	1.28(2)
O(51)-C(55)	1.29(2)
O(52)-C(63)	1.28(1)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.39 (1)
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.34(2)$
$\mathrm{N}(1)-\mathrm{C}(6)$	1.45(2)
$\mathrm{N}(2)-\mathrm{C}(3)$	1.29(2)
$\mathrm{N}(51)-\mathrm{N}(52)$	1.41(2)
$\mathrm{N}(51)-\mathrm{C}(55)$	1.38(1)
$\mathrm{N}(51)-\mathrm{C}(56)$	1.40(2)
$\mathrm{N}(52)-\mathrm{C}(53)$	1.29(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.46 (2)
$\mathrm{C}(3)-\mathrm{C}(12)$	1.47(2)
C(4)-C(5)	1.43(2)
$\mathrm{C}(4)-\mathrm{C}(13)$	1.37(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.37(2)
$\mathrm{C}(6)-\mathrm{C}(11)$	1.37(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.40(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.37(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.34(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.40(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.48(2)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.38(3)$
$\mathrm{C}(14)-\mathrm{C}(19)$	1.41(2)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.38 (2)
C(16)-C(17)	1.41(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.34(3)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.39 (2)
C(20)--C(21)	$1.40(4)$
$\mathrm{C}(20)-\mathrm{C}(25)$	1.38 (2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.40 (5)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.33(5)
C(23)-C(24)	1.40 (8)
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.40(4)$
$\mathrm{C}(26)-\mathrm{C}(27)$	1.40 (2)
C(26) C(31)	1.40 (2)
$\mathrm{C}(27)-\mathrm{C}(28)$	1.37 (2)
$\mathrm{C}(28)-\mathrm{C}(29)$	1.40 (2)
C(29)-C(30)	1.35(2)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.35(2)
$\mathrm{C}(53)-\mathrm{C}(54)$	1.46(2)
C(53)-C(62)	1.48 (2)
$\mathrm{C}(54)-\mathrm{C}(55)$	1.42(2)
C(54)-C(63)	$1.39(2)$
C(56)-C(57)	1.38(3)
C(56)-C(61)	$1.39(2)$
$\mathrm{C}(57)-\mathrm{C}(58)$	1.35 (3)
$\mathrm{C}(58)-\mathrm{C}(59)$	1.36(3)
C(59)-C(60)	1.35(4)
$\mathrm{C}(60)-\mathrm{C}(61)$	1.37(4)
C(63)-C(64)	$1.50(2)$
C(64)-C(65)	1.38(2)

Table 6 (continued)

Rest of the molecule	
C(64)-C(69)	$1.37(2)$
C(65)-C(66)	$1.37(3)$
C(66)-C(67)	$1.39(2)$
C(67)-C(68)	$1.34(2)$
C(68)-C(69)	$1.40(2)$

$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$. These complexes also have STB configurations, with $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles of $150.0(5)^{\circ}$, $153,3(3)^{\circ}$ and $154.5(3)^{\circ}$ respectively. Two other similar complexes which are also STB are ${ }^{n} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$ [33] and $\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2},[34]$, with $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles of $154.7(8)^{\circ}$ and $162.1(3)^{\circ}$ respectively. All these complexes are compared in Table 8, together with the symmetric complexes $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}$ [13a] and ${ }^{n} \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{dbzm})_{2}$ (dbzm $=1,3$-diphenylpropane-1,3-dionato) [13b] which have the same type of tin environment. These are the only non-distorted octahedral complexes in Table 8 and have the only symmetric ligands. In our complex, the two phenyl groups bound to tin are perpendicular to each other (the dihedral angle between the two planes is $\left.92.7(6)^{\circ}\right)$. The plane of one ring [$\left.C(20)---C(25)\right]$ bisects the equatorial plane of the complex given by $\mathrm{O}(1)---\mathrm{Sn}---\mathrm{O}(51)$, and the other phenyl ring $[\mathrm{C}(26)---\mathrm{C}(31)]$ bisects the plane $\mathrm{O}(1)-\ldots-\mathrm{Sn}---$ $-O(2)$. The energy associated with the rotation of these two phenyl rings through the $\mathrm{Sn}-\mathrm{C}(20)$ and $\mathrm{Sn}-\mathrm{C}(26)$ bonds was analysed in the following way. As the program calculating the rotational energy contribution did not contain parameters for tin, the metal was artificially substituted by silicon, since only van der Waals interactions were analysed (no atomic charge distribution was assigned or applied).

The rotation of the $[\mathrm{C}(20)---\mathrm{C}(25)]$ ring showed a minimum at the position obtained from the X-ray study. This minimum corresponds to a torsion angle $\mathrm{C}(21)-$ $\mathrm{C}(20)-\mathrm{Sn}-\mathrm{O}(51)$ of 49° and is associated with 36 kcal . Another minimum was at 136° and showed the same energy. In addition, two maxima were obtained at -66° (51 kcal) and 115° (58 kcal). These findings can be associated with steric hindrance between the ortho hydrogens and oxygens and carbons of the ligand. Rotation of the ring [C(26) $-\ldots-C(31)]$ shows $C(27)-$ $\mathrm{C}(26)-\mathrm{Sn}-\mathrm{O}(52)$ torsion angles of 47° (this conformation was found in the crystal structure), $130^{\circ},-50^{\circ}$ and -140° respectively, with energy minima of 36 kcal . Four maxima are at $87^{\circ}, 180^{\circ},-97^{\circ}$ and 0° corresponding to energies of $38 \mathrm{kcal}, 39 \mathrm{kcal}, 39 \mathrm{kcal}$ and 40 kcal respectively. Therefore, this ring can rotate freely and its location is probably influenced by packing forces in the crystal.

To further understand the role of these atoms in steric hindrance, we compared the geometry of the previously described complex, $\mathrm{Me}_{2} \operatorname{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$, with that

Table 7
Bond angles (deg) with e.s.d.s in parentheses

Coordination sphere	
$C(26)-S n-C(20)$	$173.0(7)$
$O(51)-S n-O(2)$	$176.2(3)$
$O(52)-S n-O(1)$	$176.6(3)$
$O(2)-S n-O(1)$	$84.5(4)$
$O(52)-S n-O(51)$	$85.1(3)$
$O(51)-S n-O(1)$	$91.9(3)$
$O(52)-S n-O(2)$	$98.6(3)$
$C(20)-S n-O(1)$	$93.2(6)$
$C(20)-S n-O(2)$	$88.5(5)$
$C(20)-S n-O(51)$	$90.6(5)$
$C(20)-S n-O(52)$	$88.3(6)$
$C(26)-S n-O(1)$	$92.8(5)$
$C(26)-S n-O(2)$	$88.5(4)$
$C(26)-S n-O(51)$	$92.8(4)$

$\mathrm{C}(26)-\mathrm{Sn}-\mathrm{O}(52) \quad 85(5)$
Rest of the molecule
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{Sn}$
$\mathrm{C}(13)-\mathrm{O}(2)-\mathrm{Sn} \quad 129.6(9)$
$C(55)-\alpha(51)-S n$
$C(63)-\mathrm{O}(52)-\mathrm{Sn}$
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{Sn}$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Sn}$
$C(31)-C(26)-S n$
C(27)-C(26)-Sn
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{N}(2)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{N}(2)$
$C(6)-N(1)-C(5)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1) \quad 106(1)$
$\mathrm{C}(55)-\mathrm{N}(51)-\mathrm{N}(52) \quad 109(1)$
$\mathrm{C}(56)-\mathrm{N}(51)-\mathrm{N}(52) \quad 121(1)$
$\mathrm{C}(56)-\mathrm{N}(51)-\mathrm{C}(55) \quad 128(1)$
$\mathrm{C}(53)-\mathrm{N}(52)-\mathrm{N}(51) \quad 108(1)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2) \quad 111(1)$
$\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{N}(2) \quad 118(1)$
$\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(4) \quad 129(1)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3) \quad 102(1)$
$C(13)-C(4)-C(3) \quad 132(1)$
$\mathrm{C}(13)-\mathrm{C}(4)-\mathrm{C}(5) \quad 124(1)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(1) \quad 121(1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(1)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{N}(1)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$
$C(10)-C(11)-C(6)$
$\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{O}(2)$
130(1)
107.5(9)

121(1)
117(1)
121(1)
118(1)
121(1)
119(1)
121(1)
118(1)
123(1)
111(1)
124(1)
120(1)
121(1)
117(1)
123(1)
117(2)
120(1)
116(1)
122(1)
120(1)
120(1)
119(1)

Table 7 (continued)

Rest of the molecule	
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$119(2)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$121(4)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$120(4)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$119(2)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$119(2)$
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(27)$	$116(1)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$121(1)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$120(1)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$118(1)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$122(1)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	$121(1)$
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{N}(52)$	$110(1)$
$\mathrm{C}(62)-\mathrm{C}(53)-\mathrm{N}(52)$	$117(1)$
$\mathrm{C}(62)-\mathrm{C}(53)-\mathrm{C}(54)$	$131(1)$
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	$104(1)$
$\mathrm{C}(63)-\mathrm{C}(54)-\mathrm{C}(53)$	$130(1)$
$\mathrm{C}(63)-\mathrm{C}(54)-\mathrm{C}(55)$	$125(1)$
$\mathrm{N}(51)-\mathrm{C}(55)-\mathrm{O}(51)$	$121(1)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{O}(51)$	$131(1)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{N}(51)$	$107(1)$
$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{N}(51)$	$123(1)$
$\mathrm{C}(61)-\mathrm{C}(56)-\mathrm{N}(51)$	$118(1)$
$\mathrm{C}(61)-\mathrm{C}(56)-\mathrm{C}(57)$	$118(1)$
$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(56)$	$120(1)$
$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(57)$	$122(2)$
$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(58)$	$115(2)$
$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{C}(59)$	$124(2)$
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(56)$	$117(2)$
$\mathrm{C}(54)-\mathrm{C}(63)-\mathrm{O}(52)$	$123(1)$
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{O}(52)$	$115(1)$
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(54)$	$121(1)$
$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(63)$	$119(1)$
$\mathrm{C}(69)-\mathrm{C}(64)-\mathrm{C}(63)$	$121(1)$
$\mathrm{C}(69)-\mathrm{C}(64)-\mathrm{C}(65)$	$119(1)$
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	$120(1)$
$\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{C}(65)$	$118(1)$
$\mathrm{C}(68)-\mathrm{C}(67)-\mathrm{C}(66)$	$121(1)$
$\mathrm{Br}(51)-\mathrm{C}(67)-\mathrm{C} 66)$	$119(1)$
$\mathrm{Br}(51)-\mathrm{C}(67)-\mathrm{C}(68)$	$118(1)$
$\mathrm{C}(69)-\mathrm{C}(68)-\mathrm{C}(67)$	$120(1)$
$\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(64)$	

obtained by replacing the methyl groups with phenyl groups. We generated the phenyl groups by making the ipso carbon the methyl carbon in the original complex and choosing two possible orientations for the aromatic system: one ring co-planar to the $\mathrm{Sn}-\mathrm{L}_{1}$ line ($\mathrm{L}_{1}=$ midpoint of $\mathrm{O}(1)-\mathrm{O}(2))$ and the other coplanar to $\mathrm{Sn}-\mathrm{L}_{2}$ ($\mathrm{L}_{2}=$ midpoint of $\mathrm{O}(1)-\mathrm{O}(51)$). The longest distances between the ortho hydrogens and oxygen in the equatorial plane are 2.91 and $3.05 \AA$ for one ring and 3.09 and $3.17 \AA$ for the other ring. Since the sum of the van der Waals radii is $2.60(1.20 \AA$ for H and $1.40 \AA$ for O$)$, the configuration given by $\mathrm{C}-\mathrm{Sn}-\mathrm{C}=153^{\circ}$ could be achieved by a diphenyltin(IV) complex. This conformation is very stable, as shown in Table 8, where most of the complexes show a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle close to it. Therefore, we suggest that the great change observed in
the diphenyltin(IV) complex (about 20° more in the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle) is due to electronic effects.

As shown in Table 8, only a symmetrical ligand such as acac or dbzm stabilizes a pure octahedral geometry. This octahedral system forces the ligand to have a large bite angle and equivalent $\mathrm{Sn}-\mathrm{O}$ bonds. Unsymmetrical ligands reduce the symmetry of the system, so that the bite angle becomes smaller, the two $\mathrm{Sn}-\mathrm{O}$ bonds become different and the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle becomes smaller. This trend is shown in Table 8. Furthermore, in Table 8 the title compound has values closer to the octahedral acac (or dbzm) complex for the three features mentioned above. Since $\mathrm{Sn}-\mathrm{O}$ bond distances differ less for the phenyl species than for any other unsymmetrical complex, it appears that the phenyl group is responsible for the change. As the phenyl is an electron-withdrawing group, it may be argued that the secondary O becomes more involved in bonding to the metal, shortening the $\mathrm{Sn}-\mathrm{O}(2)$ and $\mathrm{Sn}-\mathrm{O}(52)$ lengths. This results in a more symmetrical system with a less distorted octahedral axis $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$.

The marked difference in behavior between methyl and phenyl groups can also be observed in the complex [$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\left(\mathrm{Q}^{\prime} \mathrm{H}\right)$], which was synthesized and described previously [9b]. The equivalent compound $\left[\mathrm{Me}_{2} \mathrm{SnCl}_{2}-\right.$ ($\mathrm{Q}^{\prime} \mathrm{H}$)] could not be synthesized [9b]. A similar situation was seen for the complexes $\left[\mathrm{Ph}_{2} \mathrm{SnCl}_{2}\left(\mathrm{~L}^{\mathrm{A}}\right)\right]$ and $\left[\mathrm{Me}_{2^{-}}\right.$ $\left.\mathrm{SnCl}_{2}\left(\mathrm{~L}^{\mathrm{A}}\right)\right]$, ($\mathrm{L}^{\mathrm{A}}=1,2$-bis(pyrazol-1-yl)ethane) [35]. The $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle calculated for $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$ on the basis of Mössbauer data (173°) compares well with the $173.0(7)^{\circ}$ found from the diffraction study. It is interesting that the two other diphenyltin(IV) complexes, $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$ and $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{A}}\right)_{2}$ have $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles (from Mössbauer data) of 117° and 116° respectively. This can be associated with a cis arrangement, and it
shows how subtle changes in the ligand can induce dramatic changes in the diphenyltin complex geometry.

3. Experimental section

Solvents were dried by standard techniques. All the reagents were purchased from Aldrich (Milwaukee) except dibenzyltin dichloride, which was purchased from Alfa (Karlsruhe), and used as-received. The samples were dried in vacuo to constant weight ($20^{\circ} \mathrm{C}$, ca. 0.1 Torr). Elemental analyses (C, H, N) were carried out in-house with a Carlo Erba Strumentazione 1106 instrument. IR spectra from 4000 to $100 \mathrm{~cm}^{-1}$ were recorded with a Perkin-Elmer 2000 FTIR instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded on a VXR-300 Varian spectrometer operating at room temperature (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 111.9 MHz for ${ }^{119} \mathrm{Sn}$). Proton and carbon, and tin chemical shifts are reported in ppm vs. $\mathrm{Me}_{4} \mathrm{Si}$ and $\mathrm{Me}_{4} \mathrm{Sn}$ respectively. The tin spectra were run with a spectral width of 1000 ppm , and the chemical shifts were checked for aliasing by varying the center of the window. Each tin spectrum was acquired in ca. 4 h . Melting points were measured with an IA 8100 Electrothermal instrument. The electrical resistances of solutions were measured with a Crison CDTM 522 conductimeter at room temperature. ${ }^{119} \mathrm{Sn}$ Mössbauer spectra were recorded at liquid nitrogen temperature by an Flscint-Laben spectrometer equipped with an AERE cryostat. The $\mathrm{Ca}^{119} \mathrm{SnO}_{3}$ Mössbauer source, 10 mCi (from Radiochemical Centre, Amersham, UK) moved with constant acceleration and a triangular waveform was used.

The compounds $\mathrm{Q}^{\prime} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H}, \mathrm{Q}_{\mathrm{Br}} \mathrm{H}$ and $\mathrm{Q}_{\mathrm{A}} \mathrm{H}$ were prepared by the published methods [10]. Compounds

Table 8
Selected geometrical data in the coordination sphere for diorganotinbis(β-diketonate) compounds

$\left[\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}\right]\left[\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}\right]\left[{ }^{\mathrm{n}} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}\right]\left[{ }^{1} \mathrm{Bu}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}\right]\left[\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}\right]\left[\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}\right]\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]^{\mathrm{a}}\left[{ }^{\mathrm{n}} \mathrm{Bu}{ }_{2} \mathrm{Sn}(\mathrm{dbzm})_{2}\right]{ }^{\mathrm{b}}$								
$\overline{\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}{ }^{\mathrm{c}} \text { (}}$	2.143(7)	2.104 (4)	$2.12(2)$	2.145 (5)	2.104 (3)	$2.123(4)$	2.18(1)	$2.189(8)$
	2.12(1)	$2.099(4)$	2.11(1)	$2.135(6)$	$2.103(4)$	$2.105(5)$	2.20 (2)	$2.199(8)$
$\mathrm{Sn}-\mathrm{O}_{\text {s }}{ }^{\text {d }}$	$2.223(8)$	$2.385(5)$	2.35 (2)	2.381(7)	$2.337(4)$	$2.288(4)$		
	2.26 (1)	$2.436(5)$	2.38(2)	$2.461(6)$	$2.412(4)$	$2.321(4)$		
$\mathrm{Sn}-\mathrm{C}$	2.11 (1)	$2.097(8)$	$2.07(2)$	$2.20(1)$	$2.095(8)$	$2.101(8)$	$2.14(2)$	$2.115(10)$
	2.11 (2)	$2.099(8)$	2.12(2)	$2.20 \times 2)$	$2.090(8)$	$2.118(7)$		
$\mathrm{O}_{\mathrm{p}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}$	91.9(3)	$75.5(2)$	79.2(5)	74.1(2)	77.2(1)	82.7(1)	94(1)	96.2(2)
$\mathrm{O}_{\mathrm{s}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{s}}$	98.6(3)	126.7(2)	118.7(4)	127.4(2)	121.6 (1)	111.5(2)		
$\begin{aligned} & \mathrm{O}_{\mathrm{p}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{s}} \\ & \text { (bite) } \end{aligned}$	84.5(4)	78.5(2)	82.0 (4)	79.3(2)	80.9(1)	82.9(2)	86(1)	83.8(2)
	85.1(3)	79.5(2)	80.3(4)	79.8(2)	80.7(1)	83.2(1)		
C-Sn-C	173.0(7)	154.5(3)	154.7(8)	150.0(5)	153.3(3)	162.1(3)	180(0)	180.0(2)
Geometry Reference	STB	STB	STB	STB	STB	STB	octahedral	octahedral
	this work	[9f]	[32]	[9a]	[9c]	[33]	[13a]	[13b]

$\overline{\mathrm{a}}$ acac $=$ pentane-2,4-dionato; ${ }^{\mathrm{b}}$ dbzm $=1,3$-diphenylpropane-1,3-dionato; ${ }^{\mathrm{c}, \mathrm{d}} \mathrm{Sn}-\mathrm{O}_{\mathrm{p}}$ and $\mathrm{Sn}-\mathrm{O}_{\mathrm{s}}$ stand for primary and secondary bonds respectively.
$1-3,5-9,11-15,17-20$ and 23 were prepared according to procedures previously reported [9].

3.1. Syntheses of the complexes

3.1.1. Dicyclohexylbis/1-phenyl-3-methyl-4-benzoyl-pyrazolon-5-atoltin(IV), $\left[\left(C_{6} H_{H}\right)_{2} \operatorname{Sn}\left(Q^{\prime}\right)_{2}\right]$, (4)
(a) To a methanolic solution (50 ml) of the ligand Q'H ($2 \mathrm{mmol}, 556 \mathrm{mg}$) were added potassium hydroxide ($2 \mathrm{mmol}, 112 \mathrm{mg}$) and $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}(1 \mathrm{mmol}, 445$ mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 4 . Yield 60%; m.p. $219-220^{\circ} \mathrm{C}$. Found: C, 65.5; H, 5.6; N, 6.4. $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{4}$ Sn. Calc.: C, 65.8; $\mathrm{H}, 5.8 ; \mathrm{N}, 6.7 \%$. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 1.80 \mathrm{~s}(6 \mathrm{H}$, $3-\mathrm{CH}_{3}$) ; $1.05-1.40 \mathrm{~m}, 1.50-1.77 \mathrm{~m}, 2.00-2.22 \mathrm{~m}(22 \mathrm{H}$, $\left.\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 7.15-7.30 \mathrm{~m}, 7.40-7.60 \mathrm{~m}, 8.00 \mathrm{~d}(20 \mathrm{H}$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 26.8,28.8,29.6$, $47.9\left(\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 16.6\left(3-\mathrm{CH}_{3}\right) ; 149.3(\mathrm{C}(3)) ; 105.1$ (C(4)); $163.1(\mathrm{C}(5)) ; 192.0(\mathrm{C}=\mathrm{O}) ; 120.5,125.2,127.4$, $128.3,128.9,130.8138 .6,140.0$ (aromatics).
(b) $\mathrm{Q}^{\prime} \mathrm{H}(2 \mathrm{mmol}, 556 \mathrm{mg})$ and $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}(1 \mathrm{mmol}$, 445 mg) were reacted in chloroform in the presence of triethylamine ($2.2 \mathrm{mmol}, 222 \mathrm{mg}$); upon addition, to a clear filtered solution (30 ml) of diethyl ether (10 ml), a precipitate was formed which was filtered, washed with diethyl ether and recrystallized from chloroform-light petroleum.
(c) $\mathrm{Q}^{\prime} \mathrm{Na}(2 \mathrm{mmol}, 600 \mathrm{mg})$ was reacted with $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}(1 \mathrm{mmol}, 445 \mathrm{mg})$ in benzene (50 ml): the volume of the clear filtered solution was reduced in a rotary evaporator (0.1 atm) and upon addition of 15 ml of petroleum ether, a pale-yellow precipitate was formed, filtered and washed with diethyl ether (10 ml).
3.1.2. Dicyclohexylbis[1-phenyl-3-methyl-4-acetyl-pyrazolon-5-atoltin(V), $\left[\left(\mathrm{C}_{6} H_{H I}\right)_{2} \operatorname{Sn}\left(Q^{\prime \prime}\right)_{2}\right]$, (10)

To a methanolic solution (50 ml) of the ligand $\mathrm{Q}^{\prime \prime} \mathrm{H}$ ($2 \mathrm{mmol}, 432 \mathrm{mg}$) were added potassium hydroxide (2 $\mathrm{mmol}, 112 \mathrm{mg}$) and $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}(1 \mathrm{mmol}, 445 \mathrm{mg})$. A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 10. Yield 70%; m.p. $245-248^{\circ} \mathrm{C}$. Found: $\mathrm{C}, 60.5 ; \mathrm{H}$, 6.0; $\mathrm{N}, 7.7 . \mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$. Calc.: C, $60.4 ; \mathrm{H}, 6.2 ; \mathrm{N}$, 7.8%. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 2.45 \mathrm{~s}\left(6 \mathrm{H}, 3-\mathrm{CH}_{3}\right)$; $2.48 \mathrm{~s}\left(6 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 1.07-1.23 \mathrm{~m}, 1.40-1.70 \mathrm{~m}$, $1.86 \mathrm{~m}-2.04 \mathrm{~m}\left(22 \mathrm{H}, \mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 7.15-7.35 \mathrm{~m}, 7.90-$ $7.98 \mathrm{~m}\left(10 \mathrm{H}\right.$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 27.3$, 29.3, 30.3, $47.6\left(\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right)$; $18.0\left(3-\mathrm{CH}_{3}\right) ; 149.2$ (C(3)); 105.6 (C(4)); $162.7(\mathrm{C}(5)) ; 27.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right)$; $193.7(\mathrm{C}=\mathrm{O})$; 121.2, 125.6, 129.4, 139.1 (aromatics).
3.1.3. Dicyclohexylbis(1-phenyl-3-methyl-4-p-bromo-benzoylpyrazolon-5-atoltin(IV), $\quad\left[\left(C_{6} H_{I I}\right)_{2} \operatorname{Sn}\left(Q_{B r}\right)_{2}\right]$, (16)

To a methanolic solution (50 ml) of the ligand $\mathrm{Q}_{\mathrm{Br}} \mathrm{H}$ ($2 \mathrm{mmol}, 704 \mathrm{mg}$) were added potassium hydroxide (2 $\mathrm{mmol}, 112 \mathrm{mg}$) and $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}(1 \mathrm{mmol}, 445 \mathrm{~g}) . \mathrm{A}$ precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 16. Yield 70%; m.p. $221-222^{\circ} \mathrm{C}$. Found: $\mathrm{C}, 55.6 ; \mathrm{H}$, 4.8; N. 6.0. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$ Sn. Calc.: C, 55.4 ; H, 4.7; $\mathrm{N}, 5.6 \%$. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 1.80 \mathrm{~s}\left(6 \mathrm{H}, 3-\mathrm{CH}_{3}\right)$; $1.05-1.45 \mathrm{~m}, 1.50-1.77 \mathrm{~m}, 1.90-2.15 \mathrm{~m}(22 \mathrm{H}, \mathrm{Sn}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 7.15-7.25 \mathrm{~m}, 7.40 \mathrm{~d}, 7.65 \mathrm{~d}, 7.98 \mathrm{~d}(18 \mathrm{H}$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 26.7,28.8,29.9,47.9$ $\left(\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 16.8\left(3-\mathrm{CH}_{3}\right) ; 148.9(\mathrm{C}(3)) ; 105.1(\mathrm{C}(4))$; 162.9 (C(5)); $190.4(\mathrm{C}=\mathrm{O}) ; 120.6,125.4,125.9,129.0$, 129.2, 131.7, 138.4, 138.7.
3.1.4. Dibenzylbis/1-phenyl-3-methyl-4-p-methoxy-benzoylpyrazolon-5-atoltin(IV), $\left[\left(C_{7} H_{7}\right)_{2} \operatorname{Sn}\left(Q_{A}\right)_{2}\right]$, (2I)

To a methanolic solution (50 ml) of the ligand $\mathrm{Q}_{\mathrm{A}} \mathrm{H}$ ($2 \mathrm{mmol}, 616 \mathrm{mg}$) were added potassium hydroxide (2 mmol, 112 mg) and $\mathrm{Bz}_{2} \mathrm{SnCl}_{2}$ ($1 \mathrm{mmol}, 372 \mathrm{mg}$). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 21. Yield 73%; m.p. $160-162^{\circ} \mathrm{C}$. Found: C, $65.6 ; \mathrm{H}$, 4.8; N, 6.1. $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Sn}$. Calc.: C, 65.6; H, 4.8; N, 6.1%. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 1.78 \mathrm{~s}\left(6 \mathrm{II}, 3-\mathrm{CII}_{3}\right)$; $2.98 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{Sn}-\mathrm{CH}_{2}\right) ; 3.90 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right) ; 6.80-$ $7.00 \mathrm{~m}, 7.25-7.48 \mathrm{~m}, 7.65 \mathrm{~d}, 7.92 \mathrm{~d}(28 \mathrm{H}$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 36.7,124.3,127.5,129.0$, $138.7\left(\mathrm{Sn}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 55.5\left(\mathrm{O}-\mathrm{CH}_{3}\right) ; 16.5\left(3-\mathrm{CH}_{3}\right)$; 149.0 ($\mathrm{C}(3)$); $102.3(\mathrm{C}(4))$; 162.4 ($\mathrm{C}(5))$; n.o. $(\mathrm{C}=\mathrm{O})$; $113.4,120.8,125.4,128.0,130.6,131.5,138.3,163.8$ (aromatics).
3.1.5. Dicyclohexyllbis(1-phenyl-3-methyl-4-p-methoxy-benzoylpyrazolon-5-atoltin(IV) $\left[\left(C_{6} H_{H}\right)_{2} \operatorname{Sn}\left(Q_{A}\right)_{2}\right]$, (22)

To a methanolic solution (50 ml) of the ligand $\mathrm{Q}_{\mathrm{A}} \mathrm{H}$ ($2 \mathrm{mmol}, 616 \mathrm{mg}$) were added potassium hydroxide (2 mmol, 112 mg) and $\mathrm{Cy}_{2} \mathrm{SnBr}_{2}$ ($1 \mathrm{mmol}, 889 \mathrm{mg}$). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 22. Yicld 85%; m.p. $248-250^{\circ} \mathrm{C}$. Found: C, $64.3 ; \mathrm{H}$, 5.8; N, 6.1. $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6}$ Sn. Calc.: C, 64.1; H. 5.8; N, 6.2%. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 1.94 \mathrm{~s}\left(6 \mathrm{H}, 3-\mathrm{CH}_{3}\right)$; $0.97-1.18 \mathrm{~m}, 1.40-1.70 \mathrm{~m}, 1.98-2.15 \mathrm{~m}(22 \mathrm{H}, \mathrm{Sn}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 3.91 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right) ; 7.00 \mathrm{~d}, 7.15-7.30 \mathrm{~m}$,
$7.58 \mathrm{~d}, 8.03 \mathrm{~d}\left(18 \mathrm{H}\right.$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$: 26.8, 28.8, 29.8, $47.8\left(\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{11}\right) ; 55.4\left(\mathrm{O}-\mathrm{CH}_{3}\right) ; 16.8$ $\left(3-\mathrm{CH}_{3}\right) ; 149.0(\mathrm{C}(3)) ; 105.0(\mathrm{C}(4)) ; 162.2(\mathrm{C}(5)) ; 191.2$ $(\mathrm{C}=\mathrm{O}) ; 113.5,120.5,125.1,128.9,130.3,132.3,138.7$, 162.8 (aromatics).
3.1.6. Di-t-butylbis[1-phenyl-3-methyl-4-p-methoxyben-zoylpyrazolon-5-atoltin(IV). [(t-C $\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \operatorname{Sn}\left(Q_{A}\right)_{2}\right]$, (22)

To a methanolic solution (50 ml) of the ligand $\mathrm{Q}_{\mathrm{A}} \mathrm{H}$ ($2 \mathrm{mmol}, 616 \mathrm{mg}$) were added potassium hydroxide (2 mmol, 112 mg) and ${ }^{'} \mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ ($1 \mathrm{mmol}, 304 \mathrm{mg}$). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 24. Yield 75%; m.p. $223-225^{\circ} \mathrm{C}$. Found: $\mathrm{C}, 62.2 ; \mathrm{H}$, 5.5; N, 6.4. $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Sn}$. Calc.: C, 62.4; H, 5.7; N, 6.6%. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right): 1.27 \mathrm{~s}(9 \mathrm{H}, \mathrm{Sn}-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.98 \mathrm{~s}\left(3 \mathrm{H}, 3-\mathrm{CH}_{3}\right) ; 3.90 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right)$; $7.00 \mathrm{~d}, 7.20-7.45 \mathrm{~m}, 7.63 \mathrm{~d}, 8.05 \mathrm{~d}\left(9 \mathrm{H}\right.$, aromatics). ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$: 29.3, $51.0\left(\mathrm{Sn}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 16.4$ $\left(3-\mathrm{CH}_{3}\right) ; 55.4\left(\mathrm{O}-\mathrm{CH}_{3}\right) ; 148.7(\mathrm{C}(3))$; n.o. (C(4)); 162.3 ($\mathrm{C}(5)$); n.o. $(\mathrm{C}=\mathrm{O})$; 113.5, 120.4, 125.0, 128.4, $128.5,128.9,129.7,130.4,131.9,132.0,133.9,134.1$, 163.8 (aromatics).

3.2. Crystallographic study

A preliminary study of $\left[\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}\right] 14$ was performed using a Weissenberg Camera to determine cell parameters and space group. A Rigaku rotating anode diffractometer was used for the measurements of the cell constants and for the data collection. A summary of crystal data together with details of data collection and computer resolution are given in Table 9.

Monitoring of the reflections $[-2,4,0],[-2,-2,0]$ and $[-1,-5,-2]$, taken every 150 reflections, indicated no decay. A ψ-scan for the reflections [$0,0,1$], [$0,0,2$] and $[0,-1,-2]$ showed absorption anisotropy (with minimum transmission of 32%) and the corresponding correction was applied. Data were also corrected for Lorentz and polarization effects.

The molecular structure was solved with direct methods running shelx-86 [36]. Subsequent calculations were performed with the CAOS program [37] as follows: refinement based on the minimization of the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with the weighting scheme $w=$ $1 /\left(a+F_{0}+c F_{0}^{2}\right)$, where a and c are $2 F_{0}(\min)$ and $2 / F_{\mathrm{o}}$ (max) [38] respectively; H atoms were introduced at fixed positions according to a $\mathrm{C}-\mathrm{H}$ distance of 0.96 Å. Anisotropic displacement parameters were allowed for non- H atoms and H isotropic displacement parameters were kept fixed. Calculations were performed on a Vax 3300 computer. Atomic scattering factors and anomalous dispersion terms were taken from Ref. [39]. Conformation of chelating rings were analyzed with the

Table 9
Summary of crystal data

Formula	$\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{Sn}$
Formula weight	981.31
$a(\AA \AA)$	$10.882(1)$
$b(\AA)$	$36.515(3)$
$c(\AA)$	$11.513(1)$
$\alpha(\mathrm{deg})$	90
$\beta(\mathrm{deg})$	$116.193(8)$
$\gamma(\mathrm{deg})$	90
Volume $\left(\AA^{3}\right)$	$4105.2(8)$
Space group	$P 2_{1} / a$
Z	4
Crystal dimensions $\left(\mathrm{mm}^{3}\right)$	$0.35 \times 0.20 \times 0.20$
Density calcd. $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.595
Terperature (K)	298
$F(000)$	1960
$\mu\left(\mathrm{~cm}{ }^{-1}\right)$	80.956
Radiation	Cu rotating anode
Data collection mode	$2 \Theta-\Theta$
Scan speed (deg min $\left.{ }^{-1}\right)$	32
Scan range $($ deg $)$	0.8
Background counts	$1 / 4$ of scan time at the end
	of scan range
2θ range (deg)	$5-125$
Reflections collected	7125
Reflections used	4421
Final no. variables	514
R_{f}, R_{w}	$0.084,0.104$

PARST program [40] and rotation of phenyl rings were done with the CHEMX program [41].

Acknowledgements

Financial support by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and by Consiglio Nazionale delle Ricerche C.N.R.-Rome are acknowledged.

References

[1] P.G. Harrison, Chemistry of Tin, Blackie, Glasgow, 1989, Chapters 11 and 13.
[2] A.G. Davis and P.J. Smith, Tin nn: F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 2, Pergamon, New York, 1982, pp. 610-616 and references cited therein.
[3] C.J. Evans and S. Karpel, J. Organomet. Chem. Libr., 16 (1985) 1.
[4] D.C. Gross, Inorg. Chem., 28 (1989) 2355.
[5] M. Gielen, Tin-Based Antitumor Drugs, Springer, Berlin, 1990, p. 47 and p. 209, and references cited therem.
[6] A. Meriem. R. Willem. M. Biesemans, B. Mahueu, D. de Vos, P. Lelieveld and M. Gielen, Appl. Organomet. Chem., 5 (1991), 195.
[7] A.J. Crowe, Drugs Future, 12 (1987) 255.
[8] (a) A.J. Crowe, Metal-Based Antitumor Drugs, Vol. 1, Freund, London, 1989, pp. 103-149; (b) I. Haiduc, C. Silvestru,

Organometallics in Cancer Chemotherapy, Vol. 1, Main Group Metal Compounds, CRC, Boca Raton, FL, 1989.
[9] (a) C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati and B. Bovio, J. Organomet. Chem., 405 (1991) 75; (b) C. Pettinari, F. Bonati, A. Cingolani, G. Gioia Lobbia and F. Marchetti, Gazz. Chim. Ital., 122 (1992) 261; (c) B. Bovio, A. Cingolani, F. Marchetti and C. Pettinari, J. Organomet. Chem., 458 (1993) 39; (d) F. Marchetti, C. Pettinari, A. Cingolani and D. Leonesi, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 1485; (e) C. Pettinari, F. Marctretti, A. Cingolani, C. Marciante, R. Spagna and M. Colapietro, Polyhedron, 13 (1994) 939; C. Pettinari, F. Marchetti, D. Leonesi, M. Rossi and F. Caruso, J. Organomet. Chem., 483 (1994) 123.
[10] (a) B.S. Jensen, Acta Chem. Scand., 13 (1959) 1347, 1668, 1890; (b) S. Miyazaki, H. Mukai, S. Umetanı, S. Kihara and M. Matsui, Inorg. Chem., 28 (1989) 3014 and references cited therein; (c) R. Morales, H. Nekimken, C.S. Bartholdi and P.T. Cunningham, Spectrochim. Acta A, 44 (1988) 165 and references cited therein; (d) M.Y. Mirza and R.T. Bailey, J. Inorg. Nucl. Chem., 41 (1979) 772; (e) M.Y. Mirza and F.J. Nwabue, Talanta, 28 (1981) 53; (f) F. Bonati, L.A. Oro and M.T. Pinillos, Polyhedron, 4 (1985) 357 and references cited therein; (g) M.S. Nagar, P.B. Ruikar and M.S. Subramanian, Polyhedron, 6 (1987) 1913; (b) E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 97 and references cited therein; (i) E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 85.
[11] D.L. Kepert, Prog. Inorg. Chem.. 23 (1977) 1.
[12] (a) J.H. Wengrovvius and M.F. Garbauskas, Organometallics, 11 (1992) 1334; (b) S.P. Narula, S.K. Bharadway, Y. Sharda, R.O. Day, L. Howe and R.R. Holmes, Organometallics, 11 (1992) 2206; (c) T.P. Lockhart and F. Davison, Organometallics, 6 (1987) 2471; (d) T.P. Lockhart, J.C. Calabrese and F. Davison, Organometallics, 6 (1987) 2479.
[13] (a) G.A. Miller and E.O. Schlemper, Inorg. Chem., 12 (1977) 677; (b) G. Poli, C.J. Cheer and W.H. Nelson, J. Orgarwmet. Chem., 306 (1986) 347.
[14] (a) M. McGrady and R.S. Tobias, Inorg. Chem., 3 (1964) 1157; (b) M. McGrady and R.S. Tobias, J. Am. Chem. Soc., 87 (1965) 1909; (c) R.W. Jones and R.C. Fay, Inorg. Chem., 12 (1973) 2599; (d) I. Wharf and D.F. Shriver, Inorg. Chem., 8 (1969) 914.
[15] W.F. Edgell and C.H. Ward, J. Mol. Spectrosc., 8 (1962) 343.
[16] (a) J.R. May, W.R. McWhinne and R.C. Poller, Spectrochim. Acta A, 27 (1971) 969; (b) A.L. Smith, Spectrochim. Acta A, 24 (1967) 695; (c) M.S. Dance, W.R. McWhinnie and R.C. Poller, J. Chem. Soc. Dalton Trans., (1976) 2349.
[17] (a) B.Y.K. Ho and J.J. Zuckermann, Inorg. Chem., 12 (1973) 1552; (b) J.K. Sandhu, G. Kaur, J. Holecek and A. Licka, J. Organomet. Chem., 345 (1988) 51.
[18] G.K. Sandhu and N.S. Boparoy, J. Organomet. Chem., 411 (1991) 89.
[19] (a) G.K. Sandhu, R. Hundal and E.R. Tiekink, J. Organomet. Chem., 412 (1991) 31; (b) G. Sandhu and N.S. Boparoy, J.

Organomet. Chem., 420 (1991) 23; (c) K. Nakamoto, Spectra of inorganic and coordination compounds, in Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th ed., 1986, pp. 259-263.
[20] (a) C.I.F. Denekamp, D.F. Evans, A.M.Z. Slawin, D.J. Williams, C.Y. Wong and J.D. Woollins, J. Chem. Soc. Dalton Trans., (1992) 2375.
[21] G.A. Miller and E.O. Schlemper, Inorg. Chim. Acta. 30 (1978) 131.
[22] D.M. Adams, Metal-carbon and related frequences in alkyl, aryl and π-bonded compounds, in Metal-Ligand and Related Vibrations, Edward Amold, London, 1st edn., 1967, pp. 202203.
[23] B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 16 (1985) 73.
[24] T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
[25] W.F. Howard, Jr., R.W. Crecely and W.H. Nelson, Inorg. Chem., 24 (1985) 2204.
[26] J.R. Holmes and H.D. Kaesz, J. Am. Chem. Soc., 83 (1961) 3903.
[27] (a) T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189; (b) M.H. Chisholm and S. Godleski, Prog. Inorg. Chem., 20 (1976) 299; (c) A. Lycka, J. Jirman, J. Holecek and I. Tkac, J. Organomet. Chem., 372 (1989) 327; (d) S.W. Ng and V.G. Kumar Das, J. Organomet. Chem., 409 (1991) 143.
[28] P.G. Harrison, Investigating tin using spectroscopy, in Chemistry of Tin, Blackie, Glasgow, 1989, Chapter 3, pp. 60-117.
[29] D. Tudela, A. Javier Maira, D. Cunningham and B. Timmins, Inorg. Chim. Acta, 232 (1995) 195.
[30] J.J. Zuckerman, in R.H. Herber (ed.), Chemical Mössbauer Spectroscopy, Plenum, New York, 1984, Chapter XI.
[31] R.V. Parish, in G.J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Plenum, New York, 1984, Chapter 16.
[32] J.D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354.
[33] S. Saxena, R. Bhora and A.K. Ray, Inorg. Chim. Acta, 173 (1990) 191.
[34] A. Jain, S. Saxena, R. Bohra and A.K. Ray, Main Group Met. Chem., 18 (1995) 139.
[35] C. Pettinari, A. Lorenzotti, G. Sclavi, A. Cingolani, E. Rivarola, M. Colapietro and A. Cassetta, J. Organomet. Chem., 496 (1995) 69.
[36] G.M. Sheldnck, (1985) in G.M. Sheldrick, C. Kruger and R. Goddard (eds.), Crystallographic Computing 3, Oxford University Press, pp. 175-189.
[37] M. Camalli, D. Capitani, G. Cascarano, S. Cerrini, G. Giacovazzo and R. Spagna, CAOS program: User Guide, 1986 (Ist. Strut. Chim. CNR, Monterotondo Stazione, Rome, Italy).
[38] D.J. Cruickshank, in J.S. Rollet (ed.), Computing Methods in Crystallography, Pergamon, Oxford, 1965, p. 114.
[39] International Tables for X-Ray Crystallography, Kynoch, Birmingham, UK, 1974.
[40] N. Nardelli, Acta Crystallogr. Sect. C:, 39 (1983) 1141.
[41] Chemical Design, Ltd., Oxford, UK.

[^0]: " Corresponding author.
 ${ }^{1}$ Corresponding author for the X -ray structure analysis.

