

Journal of Organometallic Chemistry 519 (1996) 29-44

Tin(IV) and organotin(IV) derivatives of anionic 4-acyl-5-pyrazolonato ligands: synthesis, spectroscopic characterization (IR, far-IR, ¹¹⁹Sn Mössbauer, ¹H, ¹³C and ¹¹⁹Sn NMR) and behavior in solution Crystal and molecular structure of *trans*-diphenylbis[1-phenyl-3methyl-4-(4-bromobenzoyl)-pyrazolon-5-ato]tin(IV)

Francesco Caruso^{a,1}, Dante Leonesi^b, Fabio Marchetti^b, Eleonora Rivarola^c, Miriam Rossi^d, Vesselin Tomov^d, Claudio Pettinari^{b,*}

^a Istituto di Strutturistica Chimica "G. Giacomello", CP 10, 00016, Monterotondo Stazione, Roma, Italy

^b Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata, Italy

Dipartimento di Chimica Inorganica, Università degli Studi, via Archirafi 26, 90123, Palermo, Italy Vassar College, Department of Chemistry, Poughkeepsie, NY 12601, USA

Received 11 September 1995

Abstract

Stable six-coordinate tin(IV) and organotin(IV) derivatives $X_2 SnQ_2$ (X = Me, Ph, benzyl, cyclohexyl, Cl or ¹Bu) (QH = 1-R'-3-methyl-4-R''(C=O)-pyrazol-5-one in general; in detail Q'H: R' = C₆H₅, R'' = C₆H₅; Q''H: R' = C₆H₅, R'' = CH₃; Q_AH: R' = C₆H₅, R'' = p-CH₃O-C₆H₄; Q_{Br}H: R' = C₆H₅, R'' = p-Br-C₆H₄) have been synthesized and characterized by analysis and spectral (IR and far-IR, ¹H, ¹³C and ¹¹⁹Sn NMR, ¹¹⁹Sn Mössbauer) data. Structural predictions were derived from ¹¹⁹Sn NMR parameters such as ${}^{1}J_{(119Sn-1^{3}C)}$, ${}^{2}J_{(119Sn-1^{4}H)}$ and $\delta({}^{(119}Sn)$. The diffraction study of the complex [Ph₂Sn(Q_{Br})₂] shows the metal to be six-coordinate in a skewed trapezoidal bipyramidal geometry; Sn–O distances are 2.12(1) and 2.143(7) Å, and 2.223(8) and 2.26(1) Å and the Ph–Sn–Ph bond angle is 173.0(7)°.

Keywords: Tin; ¹¹⁹Sn Mössbauer spectra; X-ray structure; IR; NMR; Pyrazolonato complexes

1. Introduction

Diorganotin(IV) derivatives of bidentate O-donor ligands play an important role in many industrial and biological applications [1]: for example carboxylate complexes are known as PVC stabilizers [2] and as catalysts for transesterification reactions [3], polyurethane polymerizations [3] and RTV silicone curing reactions [4], while derivatives of acetylacetone [5], of salicylic acid [6] and the above-mentioned carboxylate compounds [7] possess antitumor properties. The latter are presumably because tin-oxygen bonds can be easily hydrolyzed, giving rise to intermediates that are be-

* Corresponding author.

lieved to link as $R_2 Sn^{2+}$ moieties to biocellular macromolecules like DNA [8].

We have recently synthesized organotin(IV) derivatives of 4-R(C=O) pyrazolones [9], a family of heterocyclic enolizable bidentate O-donors (Fig. 1), analogous to 2,4-pentanedione and widely used to extract metal ions and as complexing agents in trace elements spectrophotometric analysis [10].

The crystal structures of three $R_2 Sn(Q)_2$ derivatives (where R = Me, ^tBu and QH is 4-aryl-1-phenyl-3-methylpyrazol-5-one) were also determined [9a,c,f]: the tin atom was always found in a strongly distorted octahedral environment, with the two alkyl groups in trans configuration ca. 150–155° and the pyrazolonate ligands linked to the tin atom through two different sets of Sn–O bonds. This kind of configuration, known as skewed trapezoidal bipyramidal (STB), is relatively

¹ Corresponding author for the X-ray structure analysis.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved *PII* \$0022-328X(96)06178-5

a 17

Fig. 1. Q'H: $R = C_6H_5$; Q"H: $R = CH_3$; $Q_{Br}H$: $R = p-Br-C_6H_4$; Q_AH : $R = p-CH_3O-C_6H_4$.

common for organotin(IV) compounds and, in accordance with Kepert's theoretical model [11], it is generally possible to ascribe the distortion to the small bites of the ligands [12]. In fact, in our compounds the bite of the acylpyrazolonates ranges from 78 to 80°, while in several diorganotin(IV)bis(acetylacetonato) derivatives, which adopt a regular octahedral geometry, the ligand bite is found in the range 83–86° [13].

In this paper we report the crystal structure of a $Ph_2Sn(Q)_2$ derivative which shows surprisingly a more regular trans octahedral environment around tin. The axial angle (C-Sn-C) is 173.0(7)°, the four Sn-O bonds are essentially equivalent and the bite (O-Sn-O) is increased to 84.5(4) and 85.1(3)°.

In this context it seemed interesting to carry out a more detailed study on a series of $R_2 SnQ_2$ derivatives (where R = Me, ¹Bt, Ph, benzyl (Bz), cyclohexyl (Cy), Cl and QH = Q'H, Q''H, $Q_{Br}H$, Q_AH), some of which were synthesized for the first time, to establish the response of ¹¹⁹Sn Mössbauer, far-IR, ¹H, ¹³C and ¹¹⁹Sn NMR spectra parameters to the structure and bonding in these complexes. In particular, we have been tried to correlate the electronegativity and the steric hindrance of R groups and (Q⁻) proligands to the geometry of our derivatives.

2. Results and discussion

The compounds 1-24 listed below are obtained in good yields according to the following displacement reaction carried out generally in methanol or ethanol and alkali:

$$2 \text{ QH} + R_n \text{SnX}_{4-n} + 2 \text{ KOH}$$
$$\rightarrow R_n X_{4-n-2} \text{Sn}(Q)_2 + 2 \text{ KX} + 2 \text{ H}_2 \text{O}$$

The reactions are rapid at room temperature, except those involving olibenzyltin(IV) derivatives which require a longer reaction time.

Relevant analytical data of the new derivatives 4, 10, 16, 21, 22 and 24 are reported in the Experimental section, whereas the spectral and analytical data of 1-3, 5-9, 11-15, 17-20 and 23 agree with those described in previous papers [9a,d,f].

As an alternative to the use of KOH, which may form oxides with $R_n SnX_{4-n}$ such as $(R_2SnO)_x$ or $(R_2SnX)_2O$, we have also employed the following procedures:

$$2 \text{ QH} + R_n \text{Sn} X_{4-n} + 2 \text{ NR}_3$$

$$\rightarrow R_n X_{4-n-2} \text{Sn}(Q)_2 + 2 [\text{NHR}_3]^+ [X]^-$$

$$2 \text{ QH} + R_n \text{Sn} X_{4-n} \xrightarrow{\Delta/\text{CHCl}_3} R_n X_{4-n-2} \text{Sn}(Q)_2 + 2 \text{ HX}$$

$$2 \text{ QNa} + R_n \text{Sn} X_{4-n} \xrightarrow{C_6 H_6} R_n X_{4-n-2} \text{Sn}(Q)_2 + 2 \text{ NaX}$$

In all cases the complexes have been purified by dissolving the crude products in chloroform and by adding to the filtered solutions diethyl ether or petroleum ether.

All the complexes, air- and thermally-stable, are soluble in chlorinated and acetone solutions. In the former they are stable for a long time, while upon prolonged standing in acetone solution they are found to decompose somewhat, producing insoluble products for which the IR spectra (see below) and the analytical data suggest an oxide nature.

2.1. IR spectra

The IR (Table 1) and far-IR spectra (Table 2) of the ligands employed and of the derivatives 1-24 have been recorded both in nujol mull and in chloroform solutions. Several assignments for our complexes have been proposed on the basis of the previous reports on tin(IV) and organotin(IV) derivatives containing O-donor ligands [14] and of a comparison with the spectra of the starting tin(IV) and organotin(IV) acceptors and of the neutral 4-acyl-5-pyrazolones.

The main changes observed in the spectra of the complexes with respect to those of the neutral free donors are: the disappearance of the broad absorption due to strongly hydrogen-bonded ν (OH); a slight shift of the carbonyl stretching frequencies; a different pattern for the bands in the 1500–1600 cm⁻¹ region due to ν (C=C) and ν (C=N). These changes suggest deprotonation of the ligand, involvement of both the carbonyl groups in the coordination of the tin(IV) atom, and formation of the six-membered chelate ring Sn–O–C–C–C–O.

In the spectra carried out in chloroform solution it is also possible to observe several vibrations in the regions 3060-3020 and 3000-2880 cm⁻¹ assignable to ν (C-H)_{aromatic} and ν (C-H)_{aliphatic} respectively.

The compound 14 shows the ν (C=O) at ca. 1588 cm⁻¹: this value is lower than those of all the other complexes and indicates a greater Sn–O interaction. This fact is also supported by crystal data (see the diffraction study).

In the far-IR region the dimethyltin(IV)bis(4-acyl-5pyrazolonate) complexes exhibit a single strong band at ca. 590 cm⁻¹ assignable to $\nu_{asym}(Sn-C)$ [15]. The X-ray crystal structure determinations carried out previously on dimethyltin(IV) derivatives 1 and 13 [9a,c] indicated a non-linear C-Sn-C skeleton; however, in these compounds the $\nu_{sym}(Sn-C)$ cannot be assigned because it is hidden under some ligand vibrations. In the diphenyltin(IV) complexes 2, 8, 14 and 20 we assigned the strong absorptions at ca. 290 and ca. 245 cm⁻¹ to $\nu_{asym}(Sn-C)$ and $\nu_{sym}(Sn-C)$ respectively; these assignments are in agreement with those reported for the analogous (phenyl)₂bis(β -diketonate)tin(IV) [14] and for other diphenyltin(IV) compounds [16].

In the spectra of di(*t*-butyl)- and dicyclohexyltin(IV) derivatives, we assigned the respective strong sharp absorptions at ca. 420 and 425 cm⁻¹ to $\nu_{sym}(Sn-C)$ [17]. This is similar to those observed in the starting diorganotin(IV) halides and absent in the spectra of the free donors. It was not possible to identify with certainty the $\nu_{asym}(Sn-C)$ because of the presence of several overlapped ligand and Sn-O vibrations. The dibenzyltin(IV) complexes exhibit two bands at ca. 540 and 455 cm⁻¹ due to $\nu_{asym}(Sn-C)$ and $\nu_{sym}(Sn-C)$ [18].

All the diorganotin(IV) complexes show at least two bands in the region $380-450 \text{ cm}^{-1}$, most likely due to $\nu(\text{Sn}-\text{O})$ stretching vibrations [14b,18,19]. These absorptions are shifted downfield with respect to those observed (ca. 490-470 and 440-420 cm⁻¹) in the spectra of dihalotin(IV)bis(β -diketonato) compounds 5, 11, 17 and 23. This behaviour is explicable by the inductive effect due to substitution of the two organyl with two halide groups. It has been noted [14c,20] that a powerful electron-withdrawing group generally increases the strength of the Sn-O bonds.

The ν (Sn-Cl) for 5, 11, 17 and 23 were detected at ca. 330-350 cm⁻¹: some differences have been found between the spectra recorded in solid-state (nujol mull) and those in chloroform solutions. The former spectra generally exhibit a multiplicity of broad bands due to the presence of different cis- and trans-isomers [14d], whereas the latter spectra show only two strong sharp absorptions. The existence of both cis and trans configurations in the solid-state is likely; only one isomer seems to be present in CHCl₃ solution, which probably adopts the cis configuration generally found in this class of dihalotin(IV) compounds [14c,21].

The medium or strong absorption generally found at ca. 170–180 cm⁻¹ (compounds 1, 3–4, 6–7, 9–10, 12–13, 15–16, 18–19, 21–22 and 24) and at ca. 220 cm⁻¹ (2, 8, 14 and 20) could be assigned to δ (C–Sn–C) [16,22]. Moreover, the strong bands observed at ca. 220 cm⁻¹ in the spectra of 5, 11, 17 and 23 are characteristic of the δ (Cl–Sn–Cl) [14a].

2.2. NMR spectra

The ¹H and ¹³C NMR data of the new derivatives 4, 10, 16, 21, 22 and 24 in $CDCl_3$ solution are listed in the

Experimental section and were assigned according to Ref. [9]. The data corroborate the conclusions previously reported [9]; in the ¹H spectra the 3-CH₃ proton resonance in the free ligands shifts upfield upon complexation, whereas in the ¹³C spectra the carbon atom of the same group shifts downfield. A displacement for both the carbonyl groups was observed upon coordination: an upfield for C(O), and a downfield displacement for C(5) with the same order of magnitude of the C(3) and C(4) displacement; this trend can be correlated with the formation of Sn–O bonds, which generate a decrease of electron density on the heterocyclic ring.

crease of electron density on the heterocyclic ring. The main ¹¹⁹Sn NMR parameters (${}^{n}J_{(1^{19}Sn^{-1}H)}$, ${}^{n}J_{(1^{19}Sn^{-1}Sn^{-1}H)}$, and ¹¹⁹Sn chemical shift) of derivatives 1-24 in CDCl₃ solution are listed in Table 3.

The coupling constants observed are of the same order as those reported in the literature for hexacoordinate diorganobis(chelate)tin(IV) derivatives [23].

The $\theta(C-Sn-C)$ can be correlated to the magnitude of ${}^{1}J_{(119Sn-13C)}$ and ${}^{2}J_{(119Sn-1H)}$ and structural predictions can be derived by applying the Lockhart [24] and Howard equations [25] (Table 3). The values of θ obtained for compounds 1 and 13, by using the Eq. (I) (also reported in Table 3) are significantly different from those previously observed for the same compounds in the solid state [9a,f]. The best results are obtained from Eq. (II) which gives θ values nearer to those found in the crystals. Eq. (III) has been utilized to derive the θ values for the dibenzyl-, the dicyclo and the di-t-butyl. In all cases the data are indicative of a strongly distorted trans-octahedral or STB configuration.

The amount of s character in Sn–C bonds can be related to tin–proton coupling constants through the well-known Holmes–Kaesz correlation [26]. In our dimethylbis(β -diketonate)tin(IV) complexes 1, 7, 13 and 19, it would appear that the Sn–C bonds have 47%, 48%, 43% and 46% s character respectively. On this basis we can conclude that, similar to Me₂Sn(acac)₂ (acacH = 2,4-pentanedione), in CDCl₃ solution the bonds in the C–Sn–C moieties of 1, 7, 13 and 19 are essentially sp₂ hybrids, whereas the 5p_x and 5p_y orbitals are likely to be involved in the four tin–oxygen bonds.

In the ¹³C spectra of dibenzyl- and dicyclohexyltin(IV) compounds the ${}^{n}J_{(119_{Sn}-13_{C})}$ $(n \ge 1)$ have also been detected. The poor solubility of the diphenyl compounds prevented observation of the tin satellites; however, the tin hexacoordination is confirmed by the magnitude of the values of ${}^{2/3/4}J_{(119_{Sn}-13_{C})}$ consistent with octahedral tin(IV) species [23].

The following trends, in accordance with that previously described in literature [27], have always been observed:

$$Ph_2Sn(Q)_2$$
: ${}^{3}J_{(119Sn-13C)} > {}^{2}J_{(119Sn-13C)} > {}^{4}J_{(119Sn-13C)}$

Table 1 IR data (cm ⁻¹) for the	e ligands and co	ompounds 1-24				
Compound	State	Concentration $(\mu g \text{ cm}^{-3})$	μ(C-H)	1600-1450	Other data ^a	
Q́Н	Nujol		2037° 2070m 2013m 2003	1599s, 1570sh, 1560s, 1554s, 1536m, sh, 1498s 1408- 1445a 1454sh 1418m 1400m	3500-2700br 2800-2700br	
$(CH_1), Sn(Q'),$	Nujol	4.0	30275, 3020111, 3012111, 2973W 3079w, 3060w, 3039w, 3021w	10005, 13035, 1323511, 1316111, 130011 1604s, 1594s, 1582s, 1569s, 1531s, 1494s	1000/7-0007	
1	CHCI3	4.0	3067sh, 2996m, 2935w	1601s, 1586s, 1570s, 1560sh, 1532s, 1528s, 1523sh, 1507sh 1500s		
$(C_6H_5)_2 Sn(Q')_2$	Nujol CHCI.	5.0	3063w, 3047w, 3026w 3018m - 2989w	1606s, 1585s, 1573s, 1573s, 1535m, 1532s, 1498s 1607s, 1587m, 1574m, 1560m, 1579m, 1505ch		
1		2		1500m		
$(C_7H_7)_2 Sn(Q')_2$	Nujol	5 5	3081w, 3050w, 3039w, 3922w 3033m - 2086w - 2033w	1598s, 1593s, 1586sh, 1562s, 1528s, 1503m, 1492s 1600s, 1504s, 1584m, 1577m, 1545s, 1531m, 1573m		
'n		C.C	WCC72 (MCC111, 2300W, 2300W	10005, 10748, 100400, 102701, 10028, 100101, 102201,		
$(C_{6}H_{11})_{2}Sn(Q')_{2}$	Nujol		3078w, 3054w, 3044w, 3025w	1599s, 1592s, 1581s, 1567s, 1564s, 1532s, 1497m		
4	CHCI	4.0	2995m, 2930m, 2852m	1604s, 1597s, 1585m		
$Cl_2 Sn(Q')_2$	Nujol		3080sh, 3064w, 3048w, 3032w	1598sh, 1594s, 1556s, 1548sh, 1522s, 1500s, 1483s		
5 (C.H ^t .).Sn(O').	CHCI ₃ Nuiol	4.0	299/m, 2935w, 2830w 3073sh. 3057m	10005, 13805, 13725, 13225, 131351, 13005 1614m 16075, 15936, 15826, 15675h, 15676, 15386		
2	CHCI	4 5	3015tm 2083w	15275, 1495m 16016, 15356, 1584m, 15686, 1540m, 1575m, 1591m		
	5	j		1507m, 1500m 1507m, 1500m		
н	lolun			10225, 10145, 10095, 13928, 13805, 13745, 13075, 13376, 1538m 1404e	3530-2250hr	
	CHCI	4.0	2993m, 2930m, 2882w	1623s br, 1596s, 1568s br		
$(CH_3)_2 Sn(Q'')_2$	Nujol		3081w, 3064w, 3044w	1600s, 1589s, 1573s, 1534s, 1501sh, 1488s		
7	CHC1 ₃	4.5	2984m, 2884w	1606s, 1594s, 1582s, 1539m		
$(C_{6}H_{5})_{2}Sn(Q'')_{2}$	Nujol		3085w, 3066w, 3050w, 3041w,	1601s, 1590s, 1575s, 1564s, 1558sh, 1545s, 1534s,		
9			3023w	1500sh, 1483s		
\mathbf{s} (C ₇ H ₇) ₂ Sn(Q'') ₂	CHCI ₃ Nujol	4.0	2991m, 2930m 3078w, 3061w, 3049w, 3022w	1619s, 159/s, 15/5s, 1535s, 1500sh 1611s, 1600s, 1591s, 1573s, 1539s, 1529s, 1503sh,		
				1482s		
9 (CHCI,	4.5	3060sh, 3037m, 3011m, 2988m, 2929w	1611s, 1578s, 1535s, 1518m, 1500sh		
$(C_6H_{11})_2 \sin(Q^2)_2$	Iofina	1 5	301/w, 3038w, 3045w 2021	159/s, 1592s, 1566s, 1544s, 1530s, 150/sh, 148/s 1407a 1406a 1483a 1433a		
CI Sn(O")	Nuiol	4.0	20154111, 30424111, 301 3111, 2963W, 2921W 2076au - 2064au - 2047au	100/5, 13935, 13635, 13325 15000 15070 15660 15440 15200 150764 14076		
	CHCI	4.0	3037m, 3012m, 2996w, 2882w	15068, 15758, 15068, 15478, 15768, 15708, 157078, 17078, 15068, 15968, 15868, 15638, 15638, 15408, 1522m, 1511m,		
	'n		•	1495m		
$({}^{1}C_{4}H_{9})_{2}Sn(Q'')_{2}$	Nujol		3077w, 3063w, 3043w, 3028w	1606s, 1592s, 1580s, 1545s, 1533s, 1492s		
12 Q _{Br} H	CHCI 3 Nujol	6.5	30.34m, 3018m, 2999m, 2890w, 2885w	1008s, 1595s, 1585s, 1532s 1637sh, 1617s, 1591s, 1583s, 1565s, 1555s, 1515s, 1408	3300-2000br	
	CHCI	4.2	3037m, 3029m, 3022m, 3014m, 2993w	14988 1607s, 1591s, 1559s, 1523w, 1518m, 1514m, 1500m		
$(CH_3)_2 Sn(Q_{BR})_2$	Nujol		3078w, 3062w, 3042w	1604s, 1596s, 1587s, 1580s, 1560s, 1529s, 1498sh, 1489s		

13 (C ₆ H ₅) ₂ Sn(Q _{Br}) ₂	CHC1 ₃ Nujol	3.6	3036m, 3012m, 2988w, 2882w 3080w, 3066w, 3058w, 3034w, 3020w	1601s, 1577s, 1558s, 1531m, 1491m 1588s, 1574s, 1568s, 1564s, 1556s, 1548s, 1538s, 1532s, 1577s, 1500s	
$\frac{14}{(C_7H_7)_2Sn(Q_{Br})_2}$	CHCI ₃ Nujol	3.4	3068w, 3038m, 3033m, 3012m, 2989w 3079w, 3058w, 3022w	1608s, 1590s, 1576s, 1557s, 1531s, 1493m 1597sh, 1589s, 1580s, 1574s, 1555s, 1537s, 1527sh, 1490s	
$\frac{15}{(C_6H_{11})_2Sn(Q_{B_1})_2}$	CHCI ₃ Nujol	3.3	3034m, 3021m, 3017m, 3013m, 2988w 3084w, 3062w, 3052w, 3026w, 3020w	1600sh, 1591s, 1576s, 1557s, 1531s, 1493m 1620m, 1600s, 1592s, 1580s, 1568s, 1557s, 1537s, 1520s, 150As, 1486s	
16 Cl.Sn(O),	CHCI ₃ Nuiol	6.0	3036m, 3012m, 2988w, 2931m, 2851w 3078w. 3066w, 3048w	1523s, 1578s, 1558s, 1531m, 1490m 1592s, 1578s, 1558s, 1531m, 1490m 1593s, 1588s, 1567s, 1544s, 1513s, 1497s	
17 17 17 U Se(U)	CHCI,	3.8	3030m, 3026m, 3015m, 2993w 2082m, 3064m, 2042m, 3032m	1600sh, 1590s, 1569s, 1548s, 1530sh 1600sh, 1590s, 1569s, 1548s, 1530sh	
18	CHCI	6.0	2002w, 2004w, 2042w, 2020w 2980m, 2946m, 2882m, 2853m	1574s, 1500s, 1574s, 1550s, 1530s, 1499sh 1603sh, 1593s, 1579s, 1559s, 1530s, 1499sh	
QAH	Nujol CHCI,	4.5	3069w. 3036m. 3011m. 2989w. 2937w	1608s, 1560s, 1515s, 1500m 1608s, 1560s, 1515s, 1500m	30002700br
$(CH_3)_2 Sn(Q_A)_2$	Nujol	1	3060w, 3046w, 3032w, 3020w, 3012w	1605s, 1591s, 1581s, 1568s, 1558s, 1540s, 1521s, 1506s 1500s 1400s	
19 (C ₆ H ₅) ₂ Sn(Q _A) ₂	CHCI ₃ Nujol	4.4	3037m, 3033m, 3030m, 3015s, 2982w 3067w, 3048w, 3020w, 3009w	1602s, 1200s, 1778s, 1560s, 1525s br 1602s, 1596s, 1578s, 1560s, 1575s, 1566s, 1555s, 1609s, 1604s, 1595s, 1586s, 1575s, 1566s, 1555s,	
20 (C,H,),Sn(O,),	CHC1 ₃ Nuiol	4.4	3067w, 3036s, 3011m, 2986w, 2940w 3078w, 3050w, 3019w	1606s, 1875s, 1775s, 1568m, 1556s, 1527br 1507s, 1582s, 1578s, 1557s, 1579s, 1518s, 1491s	
$(C_6H_{11})_{3}$ Sn(Q _A)	CHCl ₃ Nujol	4.4	3068m, 3033s, 3026m, 3017m, 3012m 3060w, 3041w, 3034w, 3007w	1603s, 1594s, 1581m, 1557s, 1427br, 1491m 1605s, 1598s, 1592s, 1576s, 1568s, 1556s, 1532s,	
22	CHCI,	4.0	2982m, 2938m, 2856m	1527s, 1514s, 1504s 1603s, 1594s, 1579m, 1560s, 1527br, 1518m, 1513m	
Cl ₂ Sn(Q _A) ₂ 23	Nujol CHCI ₃	4.0	3073w, 3043w 3060w, 3037m, 3030m, 3026m, 3021m	1603s, 1595s, 1578s, 1560s, 1534s, 1516s 1605s, 1599s, 1582s, 1565m, 1544br, 1530sh	
(¹ C ₄ H ₉) ₂ Sn(Q _A) ₂ 24	Nujol CHCl ₃	4.4	3075w, 3060w, 3043w, 3035w 3060w, 3037m, 3012m, 2982m, 2940m	1602s, 1592s, 1582s, 1572sh, 1557s, 1526s, 1510s 1603s, 1593s, 1582s, 1559s, 1527m, 1518br	
^a (O-H) stretching.					

Table 2 Far-IR data (cm⁻¹) for the ligands and compounds 1–24

Compound	State	$\nu(Sn-C)$	$\nu(Sn-O)$	v(Sn-Cl)	δ(C-Sn-C)	Other data
Q'H	Nujol					533m, 507m, 416w, 403w, 393w, 364m
						329m, 297w, 280w, 255w, 215w
	CHCl ₃					538m, 505m, 407m, 395sh, 360m, 326m
1	Nuial	506m	441br 304m		176m	2780F, 252W, 209W 546m, 510m, 404m, 414m, 403w, 364m
1	itujoi	57011	, J), III		17011	326w, 280w, 255w, 248w, 215m
	CHCl ₃	586m	435m, 398s		174s	548m, 510m, 495m, 350m, 324w, 284w
	-					224w
2	Nujol	289s, 252s	450s, 442s		225s	553s, 508s, 404w, 357m, 348m, 339m
	CHCI	7680 7470	448e br		220br	292w, 185m 553a 510a 362w 351m 332w 306m
	chcl ₃	2005, 2475	4405 01		22001	179hr
3	Nujol	454s	427m, 400s		168m	560m, 545m, 511m, 495m, 386w, 351m
	-					325w, 283m, 247s, 211w, 196m
	CHCl ₃	456s	430s, 400m br		175s	547s, 510s, 351m, 329w, 286w, 245s
	N	402 200-	420		1/0	225m
4	Nujoi	423m, 390s	439m, 394m		169m	550m, 540m, 509m, 326w, 282w, 266m
	CHCl ₂	422m	436m. 392s br		1695	547m, 510m, 349m, 327m, 283w, 266m
					1070	217m, 145m
5	Nujol		472m, 442m	355s, 349s		560m, 513m, 398w, 263w, 244w, 217m
				341s		187m
	CHCl ₃		462m, 444m	363s, 343s		559s, 508s, 398w, 279w, 247w, 225w
6	Nuiol	420w 398s	4306 3986		168m	151W 545s 508m 351m 327m 303m 280m
U	rujor	4200, 5703	4503, 5703		100111	247m, 225m, 200br
	CHCl ₃	392s	427s, 392s		169m	547s, 510s, 351m, 324w, 303w, 279m
	-					247m, 226m
Q″ H	Nujol					584m, 511m, 444w, 410w, 387w, 346m
	CHCI					315w, 281w, 255vw, 227w, 210w, 178w 589m, 507m, 374m, 325m, 311m, 281w
	cher3					268w, 208w, 169w
7	Nujol	591m	446sh, 436m		188m	553m, 542m, 512m, 496m, 292w, 267w
						163w, 153w
0	CHCl ₃	587s	442s, 400s		178s	512m, 494m, 325m, 277m, 190sh, 150sh
8	Nujol	290br	450s, 395s		183m	561m, 510m, 463w, 420m, 280w, 24/w 213w, 200w
	CHC1,	278s. 269s	448s, 403s		180w br	544w, 511m, 502m, 326m, 296m, 247m
	3	,	,			225w, 153w
9	Nujol	457m	444m, 419m		177m	567m, 543m, 511m, 494m, 376w, 352w
		45(.)	399m		120	325w, 303w, 247m, 225m, 202m, 195m
10	CHCI3	456sh	441m, 400m		179s br	554w, 511m, 496m, 325m, 278m, 246w
10	Nujoi	420m, 390sn	430m, 394s		1728	555m, 543m, 509m, 495m, 329m, 280m
	CHCL	422m 390sh	438m 398s		1728	587w 552w 511m 493m 326m 271m
	energ	122111, 590011	15011, 5703		1723	214m
11	Nujol		487s, 419s	353s, 337br		543m, 511m, 398w, 385w, 376w, 303w
			398s	330sh		280m, 247m, 225m, 202m, 177m, 152m
	CHCl ₃		474s, 418s	350s br		586w, 508m, 278m, 222m, 196m
12	Nujol	400s, 389vs	433m, 400sh		172s	552w, 542w, 510m, 498w, 292w, 273w
	CHCI.	39745	433m 400s		172m	18/m, 102m 587w 511m 493m 325w 274m 197m
	ener3	57243	455111, 4003		17211	150m
Q _{Br} H	Nujol					595m, 542m, 501m, 467m, 438m, 355m
	-					286w, 225w
	CHCl ₃					553m, 502m, 445m, 388m, 334m, 317m
12	Mula1	502	455. 440		172.	280w, 255w
13	nujoi	392m	400s, 442s		1/28	508m, 52/w, 384s, 552w, 328w, 302w 280m, 266w, 255w, 247w, 225w, 302w
			-107111, 377111			20011, 200w, 255w, 247w, 225w, 205w 152w
	CHC1,	586m	443s, 387s		171s br	566w, 511w, 328w, 301w, 279w, 206w

Table 2 (continued)

Compound	State	$\nu(Sn-C)$	$\nu(Sn-O)$	ν (Sn–Cl)	$\delta(C-Sn-C)$	Other data
14	Nujol	300m, 292m	453m, 442m		225m	553br, 542s, 395m, 385m, 354w, 324w
	2				203m	280m, 247m
	CHCl ₃	297m, 285br	460s br, 449s		225m	575m, 510m, 389m, 337w, 247m, 171vw
	5				200br	
15	Nujol	456br, 432s	450s, 387s		174m	572w, 556w, 512m, 330w, 282w, 265m
	-					213m, 197m
	CHCl ₃	456br, 440br	440br, 388br		171m	595w, 567w, 552w, 510m, 329m, 279m
	9					244m, 211m
16	Nujol	421s, 382s	434s, 370s		171m	554m, 542m, 511m, 334w, 332w, 290m
						273m, 203m
	CHCl ₃	442s, 385br	440s, 385s		168m	552s, 511m, 326m, 285m, 269m, 247w
	5					218m
17	Nujol		482s, 465m	357s, 338m		581w, 544w, 512m, 385sh, 298w, 282w
	-		396m			230m, 206w
	CHCl ₃		479s, 395s	353br, 340sh		583m, 517m, 508m, 278m, 224m, 221m
						201m
18	Nujol	430sh, 400s	436s, 486s		169m	511m, 352w, 326w, 279w, 267w, 255w
						247w, 203w
	CHCl ₃	440br, 390br	443s, 394s		165s	564w, 511m, 327w, 302w, 279m, 254m
	-					226sh, 213m
QAH	Nujol					543w, 530w, 512w, 501w, 445m, 327m
						280w, 266w
	CHCl ₃					540br, 533w, 519w, 506w, 443w, 420w
	_					326w, 280w
19	Nujol	589s	462s, 434s		179m	541m, 535m, 518m, 511m, 349m, 329s
			386s			310s, 281m, 260w, 247vw, 225m, 204m
	CHCl ₃	585m	448br, 398m		171s	539s, 511s, 342m, 325m, 302m, 280m
						247m, 224m
20	Nujol	279s, 266s	470br, 463s		225m	538m, 383m, 339m, 303m, 203m, 176m
		255m	446s, 419w			
	CHCl ₃	278s, 267s	449s, 419w		225m	539s, 510s, 498w, 384w, 247m, 200br
21	Nujol	443m	456s, 396s		170m	547m. 514m, 480w, 351w, 326w, 303w
						260m, 247m
	CHCl ₃	420sh	456s, 397m		169m	538m, 510m, 481m, 347m, 316m, 302m
						279m, 244m
22	Nujol	420m, 390s	440s, 390s		168m	538m, 510m, 275m, 240w, 215m
	CHCl ₃	421m, 385w	449s, 396m		169s	537s, 510s, 478m, 320br, 305br, 268m
						247m, 214s
23	Nujol		474m, 420m	352s, 334s		549s, 525w, 501m, 398w, 375m, 280m
	~~~~					247m, 225m
	CHCl ₃		47/4m, 420m	340s br		550s, 542s, 500s, 279m, 225s br
24	Nujol	420m, 398s	430s, 398s		160s	540m, 509m, 302m, 278m, 242w
	CHCl ₃	434s, 395s	450s, 395s		1658	534s, 510s, 478m, 342m, 302m, 279m
						248m, 225m

$$Bz_{2}Sn(Q)_{2}: {}^{1}J_{(119Sn-13C)} > {}^{3}J_{(119Sn-13C)} > {}^{5}J_{(119Sn-13C)} > {}^{4}J_{(119Sn-13C)} > {}^{4}J_{(119Sn-13C)} > {}^{2}J_{(119Sn-13C)} > {}^{2}J_{(119Sn-13C)} > {}^{2}J_{(119Sn-13C)} > {}^{4}J_{(119Sn-13C)} > {}^{4}J_{(1$$

The ¹¹⁹Sn NMR data, consistent with the hexacoordinate structure proposed in Ref. [28], also give further information. For example, when more sterically-hindered groups, such as *t*-butyl, or more electron-withdrawing groups, such as the phenyls or halogens, are linked to the metal center, the existence of isomers

is suggested by the presence of more than one  119 Sn resonance.

In the ¹H NMR spectra of the dihalotin(IV) derivatives, four different signals for the 3-CH₃ groups were observed, probably due to the four geometrical isomers shown in Fig. 2.

shown in Fig. 2. In the ¹¹⁹Sn NMR spectra, only three signals were found, with intensity ratio of ca. 1:2:1, probably indicating the coincidence of two cis isomers and a statistical distribution of all four isomers.

It is well known [23,28] that the extent of the chemical shift  $\delta$ (¹¹⁹Sn) of complexes having the same coordination number depends primarily on the types of sub-

¹¹⁹ Sn NMR data (CDCl ₃ solution) ^a of derivatives 1–24 and structural predictions by the Lockhart [24] and Howard equal	tions

Compound		$^{2}J(Sn-H)$	$^{3}J(Sn-H)$	$^{1}J(Sn-C)$	$^{2}J(Sn-C)$	$^{3}J(Sn-C)$	$^{4}J(Sn-C)$	θ(C–Sn	-C) (deg)	)	¹¹⁹ Sn δ (-ppm)
								Eq. (I)	Eq. (II)	Eq. (III) ^b	
$\overline{\text{Me}_2\text{Sn}(Q')_2}$	1	103		938				168.2	159	178.3	319
$Ph_2Sn(Q')_2$	2				60	90	19				481, 486, 501br
$Bz_2Sn(Q')_2$	3	124		817		50	31			160.3	451
$Cy_2 Sn(Q')_2$	4			791	35	130	< 5			155.5	431
$Cl_2Sn(Q')_2$	5										630, 633, 635
$^{t}Bu_{2}Sn(Q')_{2}$	6		133	819						160.5	456, 469
$Me_2Sn(Q'')_2$	7	104		960				170.3	161.0	175.4	321
$Ph_2Sn(Q'')_2$	8				59	89	19				483, 487
$Bz_2Sn(Q'')_2$	9	125		819		53	31			160.5	449
$Cy_2 Sn(Q'')_2$	10			780	35	130	< 5			155.0	433
$Cl_2Sn(Q'')_2$	11										631, 633, 636
$^{t}Bu_{2}Sn(Q'')_{2}$	12		133	835						163.4	456, 463
$Me_2Sn(Q_{Br})_2$	13	93		944				149.9	159.6	178.2	316
$Ph_2Sn(Q_{Br})_2$	14				59	93	18				481, 484, 486
$Bz_2Sn(Q_{Br})_2$	15	122		797		51	31			156.6	451
$Cy_2 Sn(Q_{Br})_2$	16			816	35	128	< 5			160.0	428
$Cl_2Sn(Q_{Br})_2$	17										629, 633, 636
$^{t}Bu_{2}Sn(Q_{Br})_{2}$	18		135	790						155.4	453
$Me_2Sn(Q_A)_2$	19	101		943				164.3	159.5	177.4	321
$Ph_2Sn(Q_A)_2$	20				59	90	18				484, 493
$Bz_2Sn(Q_A)_2$	21	124		796		52	31			156.4	457
$Cy2_2Sn(Q_A)_2$	22			801	36	133	< 5			157.3	432
$Cl_2Sn(Q_A)_2$	23										634, 638, 641
$^{t}Bu_{2}Sn(Q_{A})_{2}$	24		135	820						160.7	457

^a J in Hz; ^b Eq. (I):  $\theta(C-Sn-C) = 0.0161[^2J(^{119}Sn-^1H)]^2 - 1.32[^2J(^{119}Sn-^1H)] + 133.4 [24];$ Eq. (II):  $\theta(C-Sn-C) = ([^1J(^{119}Sn-^{13}C)] + 875)/11.4 [24];$  Eq. (III):  $\theta(C-Sn-C) = 0.178[^1J(^{119}Sn-^{13}C)] + 14.74 [25].$ 

stituent on the tin atom. The trend observed in our derivatives 1-24 is

$$\begin{split} -\delta_{\mathrm{Cl}_{2}\mathrm{SnQ}_{2}} &> -\delta_{\mathrm{Ph}_{2}\mathrm{SnQ}_{2}} > -\delta_{\mathrm{Bz}_{2}\mathrm{SnQ}_{2}} > -\delta_{\mathrm{Bu}_{2}'\mathrm{SnQ}_{2}} \\ &> -\delta_{\mathrm{Cy}_{2}\mathrm{SnQ}_{2}} > -\delta_{\mathrm{Me}_{2}\mathrm{SnQ}_{2}} \end{split}$$

and agrees perfectly with most of the trends described in literature [23].

## 2.3. 119 Sn Mössbauer data

Some complexes have been investigated by Mössbauer spectroscopy. The isomer shift (IS) quadrupole

Table 4 ¹¹⁹Sn Mössbauer data

splitting, (QS) average linewidth at half maximum  $\Gamma \pm$ and calculated C-Sn-C bond angle are reported in Table 4.

The IS value decreases on going from four to six-coordination species and increases with the covalent character of the tin-ligand bonds. For the compounds examined, the IS value is typical of quadrivalent tin in inorganic and organometallic derivatives. The complexes reported here are all potentially octahedral with four oxygen atoms bonded to the tin. The two complexes  $Cl_2Sn(Q)_2$  5 and 23 (Q = Q' or Q_A) show IS values (0.24 mm s⁻¹) less positive than the average

Compound	No.	IS ^{a,b}	OS ^b	$\Gamma + b$	C–Sn–C ^c
F	- • • •	$(mm s^{-1})$	$(mm \ s^{-1})$	$(mm s^{-1})$	(deg)
$\overline{(C_6H_5)_2Sn(Q')_2}$	2	0.81	2.42	0.98	117
$Cl_2Sn(Q')_2$	5	0.24	0	1.10	
$(^{t}C_{4}H_{9})_{2}Sn(Q')_{2}$	6	1.60	3.87	0.80	157
$(CH_3)_2 Sn(Q'')_2$	7	1.24	4.14	0.78	180
$(C_7 H_7)_2 Sn(Q'')_2$	9	1.29	3.45	0.89	141
$(CH_3)_2 Sn(Q_{Br})_2$	13	1.32	3.97	0.83	162
$(C_6H_5)_2 Sn(Q_{Br})_2$	14	1.15	3.78	0.92	173
$(C_7 H_7)_2 Sn(Q_{Br})_2$	15	1.40	3.42	1.02	140
$(CH_3)_2 Sn(Q_A)_2$	19	1.26	3.91	1.00	159
$(C_6H_5)_2 Sn(Q_A)_2$	20	0.84	2.37	0.82	116
$(\tilde{C}_{6}H_{11})_{2}Sn(\tilde{Q}_{A})_{2}$	22	1.53	3.90	0.86	158
$\operatorname{Cl}_2\operatorname{Sn}(Q_A)_2$	23	0.24	0	1.23	

^a With respect to a R.T. spectrum of CaSnO₃. ^b  $\pm 0.5$  mm s⁻¹. ^c Calculated by using the literature partial quadrupole splittings: [Ph] = -0.95 mm s⁻¹; [Alk] = -1.03 mm s⁻¹.

reviewed value 0.37 (0.08) mm s⁻¹ reported for octahedral  $Cl_4SnO_2$ -type complexes [29], in consonance with the increasing electronegativity of the oxygen with re-

spect to the chlorine. The decrease in the s-electron density at the tin nucleus is observable in the series  $R_2 Sn(Q_A)_2$  (R = Cl, Ph, Me, Cy) and in the pairs of

Table 5				
Atomic coordinates and	isotropic displacement	parameters with	their e.s.d.s	in parentheses

Atom	x	y	Z	B _{eq}
Sn	0.3367(1)	0.13933(2)	0.4333(1)	3.37(3)
Br(1)	0.7200(3)	0.1458(1)	- 0.0965(2)	9.0(1)
Br(51)	- 0.2778(2)	0.30733(4)	-0.0776(2)	6.8(1)
O(1)	0.4723(8)	0.0985(2)	0.5528(8)	3.8(3)
O(2)	0.4427(9)	0.1304(2)	0.3090(8)	4.3(3)
O(51)	0.2400(8)	0.1446(2)	0.5592(8)	3.8(3)
O(52)	0.1914(8)	0.1840(2)	0.3165(9)	4.2(3)
N(1)	0.599(1)	0.0456(2)	0.581(1)	3.7(3)
N(2)	0.663(1)	0.0256(3)	0.521(1)	4.4(4)
N(51)	0.0300(9)	0.1444(3)	0.567(1)	3.6(3)
N(52)	- 0.0987(9)	0.1612(3)	0.501(1)	4.2(4)
C(3)	0.647(1)	0.0440(3)	0.419(1)	4.1(5)
C(4)	0.570(1)	0.0777(3)	0.406(1)	3.4(4)
C(5)	0.540(1)	0.0760(3)	0.515(1)	3.3(4)
C(6)	0.609(1)	0.0319(3)	0.703(1)	3.8(4)
C(7)	0.571(2)	0.0530(4)	0.780(1)	5.2(6)
C(8)	0.586(2)	0.0385(4)	0.898(2)	5.9(6)
C(9)	0.635(2)	0.0036(4)	0.935(2)	5.6(6)
C(10)	0.671(2)	-0.0164(4)	0.858(2)	5.6(6)
C(11)	0.658(1)	-0.0030(3)	0.739(1)	4.6(5)
C(12)	0.700(2)	0.0284(4)	0.332(2)	6.2(7)
C(13)	0.527(1)	0.1050(3)	0.314(1)	3.9(4)
C(14)	0.575(1)	0.1101(3)	0.213(1)	4.4(5)
C(15)	0.485(2)	0.1216(4)	0.091(1)	5.0(5)
C(16)	0.525(2)	0.1317(4)	- 0.002(2)	0.4(7)
C(17)	0.666(2)	0.1310(4)	0.032(2)	5.0(7)
C(18)	0.757(2)	0.1199(4)	0.150(2)	J.4(0) 4 4(5)
C(19)	0.715(1)	0.1097(3)	0.243(1)	4.4(3) 5 2(6)
C(20)	0.188(1)	0.1007(4)	0.319(2)	3.2(0)
C(21)	0.124(2)	0.1035(0)	0.164(2)	12(1)
C(22)	0.02/(3)	0.0770(9)	0.160(4)	13(1)
C(23)	-0.000(3)	0.0493(9)	0.303(4)	11(1)
C(24)	0.037(2) 0.154(2)	0.0402(0)	0.379(2)	67(7)
C(25)	0.134(2) 0.477(1)	0.1820(3)	0.577(2)	3 6(4)
C(20)	0.438(1)	0.2134(3)	0.527(1)	4 3(4)
C(27)	0.529(2)	0.2194(9)	0.632(2)	5.4(6)
C(20)	0.525(2)	0.2377(4)	0.654(1)	4.7(5)
C(30)	0.704(1)	0.2068(4)	0.615(1)	5.1(5)
C(31)	0.615(1)	0.1794(4)	0.554(1)	4.0(4)
C(53)	-0.095(1)	0.1819(3)	0.411(1)	3.6(4)
C(54)	0.039(1)	0.1803(3)	0.411(1)	3.3(4)
C(55)	0.115(1)	0.1554(3)	0.513(1)	3.2(4)
C(56)	0.051(1)	0.1162(3)	0.657(1)	3.8(4)
C(57)	0.177(2)	0.1005(5)	0.731(2)	6.7(7)
C(58)	0.188(2)	0.0720(5)	0.810(2)	8.1(8)
C(59)	0.079(2)	0.0576(6)	0.822(2)	8.4(8)
C(60)	-0.043(2)	0.0736(8)	0.749(2)	11(1)
C(61)	-0.063(2)	0.1028(7)	0.669(2)	10(1)
C(62)	-0.222(1)	0.2016(3)	0.327(1)	4.7(5)
C(63)	0.084(1)	0.1948(3)	0.325(1)	3.2(4)
C(64)	0.002(1)	0.2234(3)	0.228(1)	3.4(4)
C(65)	-0.030(2)	0.2183(4)	0.099(1)	6.3(6)
C(66)	-0.110(2)	0.2432(5)	0.008(2)	7.5(7)
C(67)	-0.159(1)	0.2736(3)	0.048(1)	4.7(5)
C(68)	-0.117(1)	0.2809(3)	0.174(1)	4.2(5)
C(69)	-0.038(1)	0.2550(3)	0.266(1)	3.5(4)

 $\overline{B_{\text{eq}}} = (4/3)\Sigma(ij)[a(i)a(j)b(ij)].$ 



Fig. 2. The cis- and trans-isomers possible for our  $R_2 SnQ_2$  complexes.

complexes  $R_2 Sn(Q_A)_2$  and  $R_2 Sn(Q_{Br})_2$  (R = Me and Ph); this is consistent with the electronegativity trend and with the decreasing inductive effect of Ph in comparison with Me.

The  $Cl_2Sn(Q)_2$  complexes show a single resonance line typical of a cubic symmetry around the tin. The large value of  $\Gamma \pm$  for  $Cl_2Sn(Q_A)_2$  indicates an unresolved QS due to a distortion from ideal octahedral symmetry. The QS value has been widely used to distinguish between cis or trans-R₂ isomers in R₂Sn complexes [30,31]. The QS values for derivatives **6**, **7**, **9**, **13**, **14**, **15**, **19** and **22** are consistent with a trans-R₂ configuration; instead, a cis-R₂ distorted arrangement can be attributed to Ph₂Sn(Q)₂ complexes **2** and **20** (Q = Q' and Q_A). Using the Parish relationship between QS and C-Sn-C bond angle [31], the latter have been calculated. An accentuated distortion from linearity has been inferred in the Bz₂Sn(Q)₂ derivatives **9** and **15**.

#### 2.4. Diffraction study of $[Ph_2Sn(Q_{Br})_2]$ 14

The crystal structure of the title compound consists of discrete molecules without any crystallographicallyimposed symmetry. Atomic coordinates along with isotropic equivalent displacement parameters  $B_{eq}$  are shown in Table 5. Hydrogen atom positions are omitted and available from the Cambridge Crystallographic Data Base. Fig. 3 shows a view of the molecular structure with H atoms omitted for clarity. Bond distances and angles are given in Tables 6 and 7 respectively.

The metal is six-coordinate with two  $(Q_{Br}^-)$  ligands and two phenyl groups. Each ligand chelates the metal through two oxygen atoms asymmetrically, Sn-O(1) =2.12(1) Å and Sn-O(2) = 2.223(8) Å for one ligand and Sn-O(51) = 2.143(7) Å and Sn-O(52) = 2.26(1) Å for the other ligand. The system is distorted octahedral whose geometry is determined by the ligand asymmetry. This distortion is characterized by a C-Sn-C axis less than 180°. This folding is towards the longer Sn–O bonds. In our case C–Sn–C is  $173.0(7)^\circ$ ; the angles in the equatorial plane are O(1)–Sn– $O(51) = 91.9(3)^\circ$  (the primary oxygens bound to tin) and O(2)–Sn– $O(52) = 98.6(3)^\circ$  (the secondary oxygens bound to tin). As mentioned above, the Ph–Sn–Ph axis is projected towards the secondary oxygens. The Sn–C bonds are similar to those normally found in diorganotin compounds.

The  $(Q_{Br}^{-})$  ligands show the pyrazolonate ring to be planar. An analysis, based on the Cremer and Pople [32] ring puckering coordinates, shows that the two chelate rings have different total puckering amplitudes ( $Q_{T}$ [Sn-O(1)-C(5)-C(4)-C(13)-O(2)] = 0.208(8) and  $Q_{T}$ [Sn-O(51)-C(55)-C(54)-C(63)-O(52)] = 0.334(8) Å) even if their conformation is similar, both being half-chair with a local pseudo two-fold axis running along the midpoints of the Sn-O(1) and C(4)-C(13) bonds in one ring, and the midpoints of the Sn-O(51) and C(54)-C(63) bonds in the other. These pseudo axes are therefore symmetrically situated.

The primary oxygens (O(1) and O(51)) are in close contact with the ortho hydrogens (attached to C(7) and C(57)), as found previously [9f] (in this complex O(1)  $\cdots$  H(1) = 2.24(2) Å and O(51)  $\cdots$  H(18) = 2.25(2) Å). The planarity of the corresponding phenyl groups [C(6)----C(11)] and [C(56)----C(61)] with respect to the pyrazolonate rings is responsible for this feature (the dihedral angle between the rings [N(1)-N(2)-C(3)-C(4)-C(5)] and [C(6)----C(11)] is 11.7(4)° and between the rings [N(51)-N(52)-C(53)-C(54)-C(55)] and [C(56)----C(61)] is 15.9(5)°).

Similar compounds were recently described by our group [9a,c,f], namely,  ${}^{t}Bu_{2}Sn(Q')_{2}$ ,  $Me_{2}Sn(Q')_{2}$ ,



Fig. 3. A view of the molecular structure of  $Ph_2Sn(Q_{Br})_2$  14 including anisotropic displacements parameters (H atoms are omitted).

Table 6 Bond lengths (Å) with e.s.d.s in parentheses

a series and a series of the s	
Coordination sphere	
$S_{\rm m}$ O(1)	2 12(1)
511-0(1)	2.12(1)
Sn-O(2)	2.223(8)
Sn = O(51)	2.143(7)
Sn ((52)	2.26(1)
311-0(32)	2.20(1)
Sn-C(20)	2.11(2)
Sn - C(26)	2 11(1)
~	
Rest of the molecule	
Br(1) - C(17)	1.89(2)
$R_{d}(51) C(67)$	1.91(2)
D(31) = C(07)	1.91(2)
U(1) = C(S)	1.30(1)
O(2) - C(13)	1.28(2)
O(51) - O(55)	1 29(2)
O(51) = O(52)	1.29(1)
O(52) - O(63)	1.28(1)
N(1) - N(2)	1.39(1)
N(1)-C(5)	1.34(2)
N(1) $C(6)$	1.45(2)
N(1) = C(0)	1.45(2)
N(2) = C(3)	1.29(2)
N(51)–N(52)	1.41(2)
N(51) = C(55)	1 38(1)
N(51) = O(50)	1.00(1)
N(51)-C(56)	1.40(2)
N(52)-C(53)	1.29(2)
C(3) - C(4)	1 46(2)
C(2) $C(12)$	1 47(2)
C(3) = C(12)	1.47(2)
C(4) - C(5)	1.43(2)
C(4) - C(13)	1.37(2)
C(6) = C(7)	1 37(2)
$C(\ell) = C(1)$	1.37(2)
C(0) - C(11)	1.37(2)
C(7) - C(8)	1.40(3)
C(8) - C(9)	1.37(2)
C(0) = C(10)	1 34(2)
C(10) = C(10)	1.54(2)
$\alpha_{10}$ - $\alpha_{11}$	1.40(3)
C(13) - C(14)	1.48(2)
C(14) - C(15)	1 38(3)
C(14) $C(10)$	1 41(2)
C(14) = C(19)	1.41(2)
C(15) - C(16)	1.38(2)
C(16)-C(17)	1.41(3)
C(17) - C(18)	1 34(3)
O(10) $O(10)$	1.3 (3)
(18) - ((19))	1.39(2)
C(20)-C(21)	1.40(4)
C(20) - C(25)	1.38(2)
C(21) = C(22)	1 40(5)
C(21) = C(22)	1.70(3)
C(22) = C(23)	1.33(5)
C(23)-C(24)	1.40(8)
C(24) - C(25)	1.40(4)
C(26) - C(27)	1.40(2)
C(20) - C(21)	1.40(2)
C(26) - C(31)	1.40(2)
C(27) - C(28)	1.37(2)
C(28) = C(29)	1 40(2)
C(20) $C(20)$	1.35(2)
C(29) = C(30)	1.33(2)
C(30) - C(31)	1.35(2)
C(53)-C(54)	1.46(2)
C(53) $C(62)$	1 48(2)
O(54) = O(55)	1.70(2)
U(54) - U(55)	1.42(2)
C(54)–C(63)	1.39(2)
C(56) - C(57)	1 38(3)
C(56) C(51)	1 20(2)
	1.39(2)
C(57)-C(58)	1.35(3)
C(58)-C(59)	1.36(3)
C(59) - C(60)	1 35(4)
C(0) = C(0)	1.25(4)
(0) - (01)	1.37(4)
C(63)-C(64)	1.50(2)
C(64) - C(65)	1 38(2)

Table 6 (continu	ied)
------------------	------

Rest of the molecule		
C(64)_C(69)	1.37(2)	
C(65)-C(66)	1.37(3)	
C(66)-C(67)	1.39(2)	
C(67)-C(68)	1.34(2)	
C(68)-C(69)	1.40(2)	
C(68)-C(69)	1.40(2)	

 $Me_2Sn(Q_{Br})_2$ . These complexes also have STB configurations, with C-Sn-C bond angles of 150.0(5)°, 153,3(3)° and 154.5(3)° respectively. Two other similar complexes which are also STB are  ${}^{n}Bu_{2}Sn(Q')_{2}$  [33] and  $Me_2Sn(Q'')_2$ , [34], with C-Sn-C angles of 154.7(8)° and  $162.1(3)^{\circ}$  respectively. All these complexes are compared in Table 8, together with the symmetric complexes  $Me_2Sn(acac)_2$  [13a] and  $^nBu_2Sn(dbzm)_2$  (dbzm = 1,3-diphenylpropane-1,3-dionato) [13b] which have the same type of tin environment. These are the only non-distorted octahedral complexes in Table 8 and have the only symmetric ligands. In our complex, the two phenyl groups bound to tin are perpendicular to each other (the dihedral angle between the two planes is 92.7(6)°). The plane of one ring [C(20) - -C(25)]bisects the equatorial plane of the complex given by O(1)----Sn----O(51), and the other phenyl ring [C(26) - --C(31)] bisects the plane O(1) - --Sn - ---O(2). The energy associated with the rotation of these two phenyl rings through the Sn-C(20) and Sn-C(26)bonds was analysed in the following way. As the program calculating the rotational energy contribution did not contain parameters for tin, the metal was artificially substituted by silicon, since only van der Waals interactions were analysed (no atomic charge distribution was assigned or applied).

The rotation of the [C(20) - -C(25)] ring showed a minimum at the position obtained from the X-ray study. This minimum corresponds to a torsion angle C(21)-C(20)-Sn-O(51) of 49° and is associated with 36 kcal. Another minimum was at 136° and showed the same energy. In addition, two maxima were obtained at  $-66^{\circ}$ (51 kcal) and 115° (58 kcal). These findings can be associated with steric hindrance between the ortho hydrogens and oxygens and carbons of the ligand. Rotation of the ring [C(26) - -C(31)] shows C(27) -C(26)-Sn-O(52) torsion angles of 47° (this conformation was found in the crystal structure),  $130^{\circ}$ ,  $-50^{\circ}$  and  $-140^{\circ}$  respectively, with energy minima of 36 kcal. Four maxima are at 87°,  $180^{\circ}$ ,  $-97^{\circ}$  and  $0^{\circ}$  corresponding to energies of 38 kcal, 39 kcal, 39 kcal and 40 kcal respectively. Therefore, this ring can rotate freely and its location is probably influenced by packing forces in the crystal.

To further understand the role of these atoms in steric hindrance, we compared the geometry of the previously described complex,  $Me_2Sn(Q_{Br})_2$ , with that

Table 7 Bond angles (deg) with e.s.d.s in parentheses

Bond Ingles (deg) with eloido m	растикаса
Coordination sphere	
C(26) = Sn = C(20)	1730(7)
O(51) Sn $O(2)$	176 2(2)
O(51) = O(2)	170.2(3)
0(32) - 311 - 0(1)	1/6.0(3)
O(2) - Sn - O(1)	84.5(4)
O(52) - Sn - O(51)	85.1(3)
O(51) - Sn - O(1)	91.9(3)
O(52) = Sn = O(2)	08 6(3)
G(22) = G(22)	70.0(J)
C(20) = Sn = O(1)	93.2(6)
C(20) - Sn - O(2)	88.5(5)
C(20)-Sn-O(51)	90.6(5)
C(20) - Sn - O(52)	88 3(6)
O(26) Sp $O(1)$	02.8(5)
C(20) = 311 = O(1)	92.8(3)
C(20) - Sn - O(2)	88.5(4)
C(26) - Sn - O(51)	92.8(4)
C(26)-Sn-O(52)	85.9(5)
Rest of the molecule	
C(5) = O(1) = Sn	124 0(0)
$C(12) - O(2) - S_1$	124.0(9)
C(13) - O(2) - Sn	129.6(9)
C(55)-O(51)-Sn	119.7(9)
C(63)–O(52)–Sn	127.1(8)
C(25)-C(20)-Sn	119(1)
C(21) C(20) Sn	120(1)
C(21) = C(20) = 311	120(1)
C(31) - C(26) - Sn	121.9(9)
C(27)-C(26)-Sn	121(1)
C(5)-N(1)-N(2)	111(1)
C(6)-N(1)-N(2)	117(1)
C(6) = N(1) = C(5)	130(1)
C(2) = N(2) = N(1)	106(1)
C(3) = IN(2) = IN(1)	106(1)
C(55) - N(51) - N(52)	109(1)
C(56)-N(51)-N(52)	121(1)
C(56)-N(51)-C(55)	128(1)
C(53) = N(52) = N(51)	108(1)
C(4) $C(3)$ $N(2)$	111(1)
C(4) = C(3) = N(2)	111(1)
U(12) - U(3) - N(2)	118(1)
C(12)-C(3)-C(4)	129(1)
C(5)-C(4)-C(3)	102(1)
C(13) - C(4) - C(3)	132(1)
C(13) = C(4) C(5)	124(1)
N(1) C(5) O(1)	124(1)
N(1) = C(3) = O(1)	121(1)
C(4) - C(5) - O(1)	130(1)
C(4)-C(5)-N(1)	107.5(9)
C(7)-C(6)-N(1)	121(1)
C(11) = C(6) = N(1)	117(1)
C(11) C(6) C(7)	121(1)
C(1) = C(0) = C(1)	121(1)
C(8) - C(7) - C(6)	118(1)
C(9) - C(8) - C(7)	121(1)
C(10)-C(9)-C(8)	119(1)
C(11) = C(10) = C(9)	121(1)
C(10) C(11) C(6)	121(1)
C(10) - C(11) - C(0)	118(1)
C(4) - C(13) - O(2)	123(1)
C(14)-C(13)-O(2)	111(1)
C(14)-C(13)-C(4)	124(1)
C(15) = C(14) = C(13)	120(1)
C(19) C(14) C(12)	120(1)
O(10) = O(14) = O(15)	121(1)
(19) - ((14) - ((15)))	117(1)
C(16)-C(15)-C(14)	123(1)
C(17) - C(16) - C(15)	117(2)
C(18) - C(17) - C(16)	120(1)
$P_{1} = C(17) = C(10)$	120(1)
D(1) - U(1) - U(10)	116(1)
Br(1) - C(17) - C(18)	122(1)
C(19)-C(18)-C(17)	120(1)
C(18) - C(19) - C(14)	120(1)
C(25), C(20), C(21)	110(1)
(40) = ((40) = ((41))	

Table 7 (continued)		
Rest of the molecule		
C(22)-C(21)-C(20)	119(2)	
C(23)-C(22)-C(21)	121(4)	
C(24)-C(23)-C(22)	120(4)	
C(25)-C(24)-C(23)	119(2)	
C(24)-C(25)-C(20)	119(2)	
C(31)-C(26)-C(27)	116(1)	
C(28)-C(27)-C(26)	121(1)	
C(29)-C(28)-C(27)	120(1)	
C(30)-C(29)-C(28)	118(1)	
C(31)-C(30)-C(29)	122(1)	
C(30)-C(31)-C(26)	121(1)	
C(54)-C(53)-N(52)	110(1)	
C(62)-C(53)-N(52)	117(1)	
C(62)-C(53)-C(54)	131(1)	
C(55)-C(54)-C(53)	104(1)	
C(63)-C(54)-C(53)	130(1)	
C(63)-C(54)-C(55)	125(1)	
N(51)-C(55)-O(51)	121(1)	
C(54) - C(55) - O(51)	131(1)	
C(54)-C(55)-N(51)	107(1)	
C(57)-C(56)-N(51)	123(1)	
C(61)-C(56)-N(51)	118(1)	
C(61)-C(56)-C(57)	118(1)	
C(58)–C(57)–C(56)	120(1)	
C(59)-C(58)-C(57)	122(2)	
C(60) - C(59) - C(58)	115(2)	
C(61)-C(60)-C(59)	124(2)	
C(60) - C(61) - C(56)	117(2)	
C(54) - C(63) - O(52)	123(1)	
C(64) - C(63) - O(52)	115(1)	
C(64) - C(63) - C(54)	121(1)	
C(65)-C(64)-C(63)	119(1)	
C(69) - C(64) - C(63)	121(1)	
C(69) - C(64) - C(65)	119(1)	
C(66) - C(65) - C(64)	120(1)	
C(67) - C(66) - C(65)	118(1)	
C(68) - C(67) - C(66)	121(1)	
B(51) - C(67) - C(66)	119(1)	
BU217-C(0) -C(08)	119(1)	
C(09) - C(08) - C(07)	118(1)	
U(08) - U(09) - U(04)	120(1)	

obtained by replacing the methyl groups with phenyl groups. We generated the phenyl groups by making the ipso carbon the methyl carbon in the original complex and choosing two possible orientations for the aromatic system: one ring co-planar to the  $Sn-L_1$  line ( $L_1 =$ midpoint of O(1)-O(2) and the other coplanar to  $Sn-L_2$  $(L_2 = midpoint of O(1)-O(51))$ . The longest distances between the ortho hydrogens and oxygen in the equatorial plane are 2.91 and 3.05 Å for one ring and 3.09 and 3.17 Å for the other ring. Since the sum of the van der Waals radii is 2.60 (1.20 Å for H and 1.40 Å for O), the configuration given by  $C-Sn-C = 153^{\circ}$  could be achieved by a diphenyltin(IV) complex. This conformation is very stable, as shown in Table 8, where most of the complexes show a C-Sn-C bond angle close to it. Therefore, we suggest that the great change observed in

the diphenyltin(IV) complex (about  $20^{\circ}$  more in the C-Sn-C bond angle) is due to electronic effects.

As shown in Table 8, only a symmetrical ligand such as acac or dbzm stabilizes a pure octahedral geometry. This octahedral system forces the ligand to have a large bite angle and equivalent Sn–O bonds. Unsymmetrical ligands reduce the symmetry of the system, so that the bite angle becomes smaller, the two Sn-O bonds become different and the C-Sn-C angle becomes smaller. This trend is shown in Table 8. Furthermore, in Table 8 the title compound has values closer to the octahedral acac (or dbzm) complex for the three features mentioned above. Since Sn-O bond distances differ less for the phenyl species than for any other unsymmetrical complex, it appears that the phenyl group is responsible for the change. As the phenyl is an electron-withdrawing group, it may be argued that the secondary O becomes more involved in bonding to the metal, shortening the Sn-O(2) and Sn-O(52) lengths. This results in a more symmetrical system with a less distorted octahedral axis C-Sn-C.

The marked difference in behavior between methyl and phenyl groups can also be observed in the complex  $[Ph_2SnCl_2(Q'H)]$ , which was synthesized and described previously [9b]. The equivalent compound  $[Me_2SnCl_2(Q'H)]$  could not be synthesized [9b]. A similar situation was seen for the complexes  $[Ph_2SnCl_2(L^A)]$  and  $[Me_2-SnCl_2(L^A)]$ ,  $(L^A = 1,2-bis(pyrazol-1-yl)ethane)$  [35]. The C-Sn-C angle calculated for  $Ph_2Sn(Q_{Br})_2$  on the basis of Mössbauer data (173°) compares well with the 173.0(7)° found from the diffraction study. It is interesting that the two other diphenyltin(IV) complexes,  $Ph_2Sn(Q')_2$  and  $Ph_2Sn(Q_A)_2$  have C-Sn-C angles (from Mössbauer data) of 117° and 116° respectively. This can be associated with a cis arrangement, and it shows how subtle changes in the ligand can induce dramatic changes in the diphenyltin complex geometry.

#### 3. Experimental section

Solvents were dried by standard techniques. All the reagents were purchased from Aldrich (Milwaukee) except dibenzyltin dichloride, which was purchased from Alfa (Karlsruhe), and used as-received. The samples were dried in vacuo to constant weight (20°C, ca. 0.1 Torr). Elemental analyses (C, H, N) were carried out in-house with a Carlo Erba Strumentazione 1106 instrument. IR spectra from 4000 to 100 cm⁻¹ were recorded with a Perkin-Elmer 2000 FTIR instrument. ¹H, ¹³C and ¹¹⁹Sn NMR spectra were recorded on a VXR-300 Varian spectrometer operating at room temperature (300 MHz for ¹H, 75 MHz for ¹³C and 111.9 MHz for ¹¹⁹Sn). Proton and carbon, and tin chemical shifts are reported in ppm vs. Me₄Si and Me₄Sn respectively. The tin spectra were run with a spectral width of 1000 ppm, and the chemical shifts were checked for aliasing by varying the center of the window. Each tin spectrum was acquired in ca. 4 h. Melting points were measured with an IA 8100 Electrothermal instrument. The electrical resistances of solutions were measured with a Crison CDTM 522 conductimeter at room temperature. ¹¹⁹Sn Mössbauer spectra were recorded at liquid nitrogen temperature by an Elscint-Laben spectrometer equipped with an AERE cryostat. The Ca¹¹⁹SnO₃ Mössbauer source, 10 mCi (from Radiochemical Centre, Amersham, UK) moved with constant acceleration and a triangular waveform was used.

The compounds Q'H, Q"H,  $Q_{Br}H$  and  $Q_AH$  were prepared by the published methods [10]. Compounds

Table 8 Selected geometrical data in the coordination sphere for diorganotinbis(  $\beta$ -diketonate) compounds

-			-	• ·		•		
<u>.                                    </u>	$[Ph_2Sn(Q_{Br})_2]$	$[Me_2Sn(Q_{Br})_2]$	$[^{n}Bu_{2}Sn(Q')_{2}]$	$[^{t}Bu_{2}Sn(Q')_{2}]$	$[Me_2Sn(Q')_2]$	$[Me_2Sn(Q'')_2]$	$[Me_2Sn(acac)_2]^a$	["Bu ₂ Sn(dbzm) ₂ ] ^b
Sn-O _p ^c	2.143(7)	2.104(4)	2.12(2)	2.145(5)	2.104(3)	2.123(4)	2.18(1)	2.189(8)
r	2.12(1)	2.099(4)	2.11(1)	2.135(6)	2.103(4)	2.105(5)	2.20(2)	2.199(8)
Sn-O _s ^d	2.223(8)	2.385(5)	2.35(2)	2.381(7)	2.337(4)	2.288(4)		
Ū	2.26(1)	2.436(5)	2.38(2)	2.461(6)	2.412(4)	2.321(4)		
Sn-C	2.11(1)	2.097(8)	2.07(2)	2.20(1)	2.095(8)	2.101(8)	2.14(2)	2.115(10)
	2.11(2)	2.099(8)	2.12(2)	2.20(2)	2.090(8)	2.118(7)		
$O_n - Sn - O_n$	91.9(3)	75.5(2)	79.2(5)	74.1(2)	77.2(1)	82.7(1)	94(1)	96.2(2)
O_S-Sn-O	98.6(3)	126.7(2)	118.7(4)	127.4(2)	121.6(1)	111.5(2)		
O _n -Sn-O _s	84.5(4)	78.5(2)	82.0(4)	79.3(2)	80.9(1)	82.9(2)	86(1)	83.8(2)
(bite)	85.1(3)	79.5(2)	80.3(4)	79.8(2)	80.7(1)	83.2(1)		
C-Sn-C	173.0(7)	154.5(3)	154.7(8)	150.0(5)	153.3(3)	162.1(3)	180(0)	180.0(2)
Geometry	STB	STB	STB	STB	STB	STB	octahedral	octahedral
Reference	this work	[9f]	[32]	[9a]	[9c]	[33]	[13a]	[13b]

^a acac = pentane-2,4-dionato; ^b dbzm = 1,3-diphenylpropane-1,3-dionato; ^{c,d}  $Sn-O_p$  and  $Sn-O_s$  stand for primary and secondary bonds respectively.

1-3, 5-9, 11-15, 17-20 and 23 were prepared according to procedures previously reported [9].

#### 3.1. Syntheses of the complexes

3.1.1. Dicyclohexylbis[1-phenyl-3-methyl-4-benzoylpyrazolon-5-ato]tin(IV),  $[(C_6H_{11})_2 Sn(Q')_2], (4)$ 

(a) To a methanolic solution (50 ml) of the ligand Q'H (2 mmol, 556 mg) were added potassium hydroxide (2 mmol, 112 mg) and  $Cy_2SnBr_2$  (1 mmol, 445 mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 4. Yield 60%; m.p. 219-220°C. Found: C, 65.5; H, 5.6; N, 6.4. C₄₆H₄₈N₄O₄Sn. Calc.: C, 65.8; H, 5.8; N, 6.7%. ¹H NMR data (CDCl₃): 1.80s (6 H, 3-CH₃); 1.05–1.40m, 1.50–1.77m, 2.00–2.22m (22 H, Sn-C₆H₁₁); 7.15-7.30m, 7.40-7.60m, 8.00d (20 H, aromatics). ¹³C NMR data (CDCl₃): 26.8, 28.8, 29.6, 47.9 (Sn-C₆H₁₁); 16.6 (3-CH₃); 149.3 (C(3)); 105.1 (C(4)); 163.1 (C(5)); 192.0 (C=O); 120.5, 125.2, 127.4, 128.3, 128.9, 130.8 138.6, 140.0 (aromatics).

(b) Q'H (2 mmol, 556 mg) and  $Cy_2SnBr_2$  (1 mmol, 445 mg) were reacted in chloroform in the presence of triethylamine (2.2 mmol, 222 mg); upon addition, to a clear filtered solution (30 ml) of diethyl ether (10 ml), a precipitate was formed which was filtered, washed with diethyl ether and recrystallized from chloroform-light petroleum.

(c) Q'Na (2 mmol, 600 mg) was reacted with  $Cy_2SnBr_2$  (1 mmol, 445 mg) in benzene (50 ml): the volume of the clear filtered solution was reduced in a rotary evaporator (0.1 atm) and upon addition of 15 ml of petroleum ether, a pale-yellow precipitate was formed, filtered and washed with diethyl ether (10 ml).

#### 3.1.2. Dicyclohexylbis[1-phenyl-3-methyl-4-acetylpyrazolon-5-ato]tin(IV), $[(C_6H_{11})_2 Sn(Q'')_2]$ , (10)

To a methanolic solution (50 ml) of the ligand Q"H (2 mmol, 432 mg) were added potassium hydroxide (2 mmol, 112 mg) and  $Cy_2SnBr_2$  (1 mmol, 445 mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 10. Yield 70%; m.p. 245-248°C. Found: C, 60.5; H, 6.0; N, 7.7. C₃₆H₄₄N₄O₄Sn. Calc.: C, 60.4; H, 6.2; N, 7.8%. ¹H NMR data (CDCl₃): 2.45s (6 H, 3-CH₃); 2.48s (6 H,  $CH_3C=0$ ); 1.07–1.23m, 1.40–1.70m, 1.86m-2.04m (22 H, Sn-C₆H₁₁); 7.15-7.35m, 7.90-7.98m (10 H, aromatics). ¹³C NMR data (CDCl₃): 27.3, 29.3, 30.3, 47.6  $(Sn-C_6H_{11})$ ; 18.0  $(3-CH_3)$ ; 149.2 (C(3)); 105.6 (C(4)); 162.7 (C(5)); 27.3 (CH₃-C=O);193.7 (C=O); 121.2, 125.6, 129.4, 139.1 (aromatics).

3.1.3. Dicyclohexylbis[1-phenyl-3-methyl-4-p-bromobenzoylpyrazolon-5-ato]tin(IV),  $[(C_6H_{11})_2 Sn(Q_{Br})_2],$ (16)

To a methanolic solution (50 ml) of the ligand  $Q_{Br}H$ (2 mmol, 704 mg) were added potassium hydroxide (2 mmol, 112 mg) and  $Cy_2SnBr_2$  (1 mmol, 445 g). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 16. Yield 70%; m.p. 221-222°C. Found: C, 55.6; H, 4.8; N. 6.0. C₄₆H₄₆Br₂N₄O₄Sn. Calc.: C, 55.4; H, 4.7; N, 5.6%. ¹H NMR data (CDCl₃): 1.80s (6 H, 3-CH₃); 1.05-1.45m, 1.50-1.77m, 1.90-2.15m (22 H, Sn-C₆H₁₁); 7.15–7.25m, 7.40d, 7.65d, 7.98d (18 H, aromatics). ¹³C NMR data (CDCl₃): 26.7, 28.8, 29.9, 47.9  $(Sn-C_6H_{11})$ ; 16.8 (3-CH₃); 148.9 (C(3)); 105.1 (C(4)); 162.9 (C(5)); 190.4 (C=O); 120.6, 125.4, 125.9, 129.0, 129.2, 131.7, 138.4, 138.7.

# 3.1.4. Dibenzylbis[1-phenyl-3-methyl-4-p-methoxybenzoylpyrazolon-5-ato]tin(IV), $[(C_7H_7)_2 Sn(Q_A)_2]$ , (21)

To a methanolic solution (50 ml) of the ligand  $Q_A H$ (2 mmol, 616 mg) were added potassium hydroxide (2 mmol, 112 mg) and Bz₂SnCl₂ (1 mmol, 372 mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 21. Yield 73%; m.p. 160-162°C. Found: C, 65.6; H, 4.8; N, 6.1. C₅₀H₄₄N₄O₆Sn. Calc.: C, 65.6; H, 4.8; N, 6.1%. ¹H NMR data (CDCl₃): 1.78s (6 H, 3-CH₃); 2.98s (4 H, Sn-CH₂); 3.90s (6 H, O-CH₃); 6.80-7.00m, 7.25-7.48m, 7.65d, 7.92d (28 H, aromatics). ¹³C NMR data (CDCl₃): 36.7, 124.3, 127.5, 129.0, 138.7 (Sn-CH₂C₆H₅); 55.5 (O-CH₃); 16.5 (3-CH₃); 149.0 (C(3)); 102.3 (C(4)); 162.4 (C(5)); n.o. (C=O); 113.4, 120.8, 125.4, 128.0, 130.6, 131.5, 138.3, 163.8 (aromatics).

### 3.1.5. Dicyclohexyllbis[1-phenyl-3-methyl-4-p-methoxybenzoylpyrazolon-5-ato]tin(IV) $[(C_6H_{11})_2 Sn(Q_A)_2],$ (22)

To a methanolic solution (50 ml) of the ligand  $Q_AH$  (2 mmol, 616 mg) were added potassium hydroxide (2 mmol, 112 mg) and Cy₂SnBr₂ (1 mmol, 889 mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound **22**. Yield 85%; m.p. 248-250°C. Found: C, 64.3; H, 5.8; N, 6.1. C₄₈H₅₂N₄O₆Sn. Calc.: C, 64.1; H. 5.8; N, 6.2%. ¹H NMR data (CDCl₃): 1.94s (6 H, 3-CH₃); 0.97-1.18m, 1.40-1.70m, 1.98-2.15m (22 H, Sn-C₆H₁₁); 3.91s (6 H, O-CH₃); 7.00d, 7.15-7.30m,

7.58d, 8.03d (18 H, aromatics). ¹³C NMR data (CDCl₃): 26.8, 28.8, 29.8, 47.8 (Sn-C₆H₁₁); 55.4 (O-CH₃); 16.8 (3-CH₃); 149.0 (C(3)); 105.0 (C(4)); 162.2 (C(5)); 191.2 (C=O); 113.5, 120.5, 125.1, 128.9, 130.3, 132.3, 138.7, 162.8 (aromatics).

#### 3.1.6. Di-t-butylbis[1-phenyl-3-methyl-4-p-methoxybenzoylpyrazolon-5-ato]tin(IV), $[(t-C_4H_9)_2 Sn(Q_A)_2]$ , (22)

To a methanolic solution (50 ml) of the ligand  $Q_A H$ (2 mmol, 616 mg) were added potassium hydroxide (2 mmol, 112 mg) and 'Bu₂SnCl₂ (1 mmol, 304 mg). A precipitate was immediately formed. The mixture was set aside overnight and the precipitate was filtered off and washed with methanol (ca. 10 ml), recrystallized from chloroform-methanol and shown to be compound 24. Yield 75%; m.p. 223-225°C. Found: C, 62.2; H, 5.5; N, 6.4. C₄₄H₄₈N₄O₆Sn. Calc.: C, 62.4; H, 5.7; N, 6.6%. ¹H NMR data (CDCl₃): 1.27s (9 H, Sn- $C(CH_3)_3$ ; 1.98s (3 H, 3-CH₃); 3.90s (3 H, O-CH₃); 7.00d, 7.20–7.45m, 7.63d, 8.05d (9H, aromatics). ¹³C NMR data (CDCl₃): 29.3, 51.0 (Sn-C(CH₃)₃); 16.4  $(3-CH_3)$ ; 55.4  $(O-CH_3)$ ; 148.7 (C(3)); n.o. (C(4)); 162.3 (C(5)); n.o. (C=O); 113.5, 120.4, 125.0, 128.4, 128.5, 128.9, 129.7, 130.4, 131.9, 132.0, 133.9, 134.1, 163.8 (aromatics).

#### 3.2. Crystallographic study

A preliminary study of  $[Ph_2Sn(Q_{B_T})_2]$  14 was performed using a Weissenberg Camera to determine cell parameters and space group. A Rigaku rotating anode diffractometer was used for the measurements of the cell constants and for the data collection. A summary of crystal data together with details of data collection and computer resolution are given in Table 9.

Monitoring of the reflections [-2, 4, 0], [-2, -2, 0]and [-1, -5, -2], taken every 150 reflections, indicated no decay. A  $\psi$ -scan for the reflections [0, 0, 1], [0, 0, 2] and [0, -1, -2] showed absorption anisotropy (with minimum transmission of 32%) and the corresponding correction was applied. Data were also corrected for Lorentz and polarization effects.

The molecular structure was solved with direct methods running SHELX-86 [36]. Subsequent calculations were performed with the CAOS program [37] as follows: refinement based on the minimization of the function  $\Sigma w(|F_o| - |F_c|)^2$  with the weighting scheme  $w = 1/(a + F_o + cF_o^2)$ , where a and c are  $2F_0(\min)$  and  $2/F_o(\max)$  [38] respectively; H atoms were introduced at fixed positions according to a C-H distance of 0.96 Å. Anisotropic displacement parameters were allowed for non-H atoms and H isotropic displacement parameters were kept fixed. Calculations were performed on a Vax 3300 computer. Atomic scattering factors and anomalous dispersion terms were taken from Ref. [39]. Conformation of chelating rings were analyzed with the

Fable 9		
Summary	of crystal data	

Formula	$C_{46}H_{34}N_4O_4Br_2Sn$
Formula weight	981.31
a (Å)	10.882(1)
b (Å)	36.515(3)
c (Å)	11.513(1)
$\alpha$ (deg)	90
$\beta$ (deg)	116.193(8)
$\gamma$ (deg)	90
Volume (Å ³ )	4105.2(8)
Space group	$P2_1/a$
Z	4
Crystal dimensions (mm ³ )	$0.35 \times 0.20 \times 0.20$
Density calcd. $(g \text{ cm}^{-3})$	1.595
Temperature (K)	298
F(000)	1960
$\mu$ (cm ⁻¹ )	80.956
Radiation	Cu rotating anode
Data collection mode	$2\Theta - \Theta$
Scan speed (deg min ⁻¹ )	32
Scan range (deg)	0.8
Background counts	1/4 of scan time at the end
	of scan range
2 $\theta$ range (deg)	5-125
Reflections collected	7125
Reflections used	4421
Final no. variables	514
$R_f, R_w$	0.084, 0.104

PARST program [40] and rotation of phenyl rings were done with the CHEMX program [41].

#### Acknowledgements

Financial support by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and by Consiglio Nazionale delle Ricerche C.N.R.-Rome are acknowledged.

#### References

- P.G. Harrison, *Chemistry of Tin*, Blackie, Glasgow. 1989, Chapters 11 and 13.
- [2] A.G. Davis and P.J. Smith, Tin in: F.G.A. Stone and E.W. Abel (eds.), *Comprehensive Organometallic Chemistry*, Vol. 2, Pergamon, New York, 1982, pp. 610–616 and references cited therein.
- [3] C.J. Evans and S. Karpel, J. Organomet. Chem. Libr., 16 (1985) 1.
- [4] D.C. Gross, Inorg. Chem., 28 (1989) 2355.
- [5] M. Gielen, *Tin-Based Antitumor Drugs*, Springer, Berlin, 1990, p. 47 and p. 209, and references cited therein.
- [6] A. Meriem, R. Willem, M. Biesemans, B. Mahieu, D. de Vos, P. Lelieveld and M. Gielen, Appl. Organomet. Chem., 5 (1991), 195.
- [7] A.J. Crowe, Drugs Future, 12 (1987) 255.
- [8] (a) A.J. Crowe, Metal-Based Antitumor Drugs, Vol. 1, Freund, London, 1989, pp. 103-149; (b) I. Haiduc, C. Silvestru,

Organometallics in Cancer Chemotherapy, Vol. 1, Main Group Metal Compounds, CRC, Boca Raton, FL, 1989.

- [9] (a) C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati and B. Bovio, J. Organomet. Chem., 405 (1991) 75; (b)
  C. Pettinari, F. Bonati, A. Cingolani, G. Gioia Lobbia and F. Marchetti, Gazz. Chim. Ital., 122 (1992) 261; (c) B. Bovio, A. Cingolani, F. Marchetti and C. Pettinari, J. Organomet. Chem., 458 (1993) 39; (d) F. Marchetti, C. Pettinari, A. Cingolani and D. Leonesi, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 1485; (e) C. Pettinari, F. Marchetti, A. Cingolani, C. Marciante, R. Spagna and M. Colapietro, Polyhedron, 13 (1994) 939; C. Pettinari, F. Marchetti, D. Leonesi, M. Rossi and F. Caruso, J. Organomet. Chem., 483 (1994) 123.
- [10] (a) B.S. Jensen, Acta Chem. Scand., 13 (1959) 1347, 1668, 1890; (b) S. Miyazaki, H. Mukai, S. Umetani, S. Kihara and M. Matsui, Inorg. Chem., 28 (1989) 3014 and references cited therein; (c) R. Morales, H. Nekimken, C.S. Bartholdi and P.T. Cunningham, Spectrochim. Acta A, 44 (1988) 165 and references cited therein; (d) M.Y. Mirza and R.T. Bailey, J. Inorg. Nucl. Chem., 41 (1979) 772; (e) M.Y. Mirza and F.J. Nwabue, Talanta, 28 (1981) 53; (f) F. Bonati, L.A. Oro and M.T. Pinillos, Polyhedron, 4 (1985) 357 and references cited therein; (g) M.S. Nagar, P.B. Ruikar and M.S. Subramanian, Polyhedron, 6 (1987) 1913; (h) E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 97 and references cited therein; (i) E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem., 23 (1993) 85.
- [11] D.L. Kepert, Prog. Inorg. Chem., 23 (1977) 1.
- [12] (a) J.H. Wengrovvius and M.F. Garbauskas, Organometallics, 11 (1992) 1334; (b) S.P. Narula, S.K. Bharadway, Y. Sharda, R.O. Day, L. Howe and R.R. Holmes, Organometallics, 11 (1992) 2206; (c) T.P. Lockhart and F. Davison, Organometallics, 6 (1987) 2471; (d) T.P. Lockhart, J.C. Calabrese and F. Davison, Organometallics, 6 (1987) 2479.
- [13] (a) G.A. Miller and E.O. Schlemper, *Inorg. Chem.*, 12 (1977) 677; (b) G. Poli, C.J. Cheer and W.H. Nelson, J. Organomet. Chem., 306 (1986) 347.
- [14] (a) M. McGrady and R.S. Tobias, *Inorg. Chem.*, 3 (1964) 1157;
  (b) M. McGrady and R.S. Tobias, *J. Am. Chem. Soc.*, 87 (1965) 1909;
  (c) R.W. Jones and R.C. Fay, *Inorg. Chem.*, 12 (1973) 2599;
  (d) I. Wharf and D.F. Shriver, *Inorg. Chem.*, 8 (1969) 914.
- [15] W.F. Edgell and C.H. Ward, J. Mol. Spectrosc., 8 (1962) 343.
- [16] (a) J.R. May, W.R. McWhinnie and R.C. Poller, Spectrochim. Acta A, 27 (1971) 969; (b) A.L. Smith, Spectrochim. Acta A, 24 (1967) 695; (c) M.S. Dance, W.R. McWhinnie and R.C. Poller, J. Chem. Soc. Dalton Trans., (1976) 2349.
- [17] (a) B.Y.K. Ho and J.J. Zuckermann, *Inorg. Chem.*, 12 (1973) 1552; (b) J.K. Sandhu, G. Kaur, J. Holecek and A. Licka, J. Organomet. Chem., 345 (1988) 51.
- [18] G.K. Sandhu and N.S. Boparoy, J. Organomet. Chem., 411 (1991) 89.
- [19] (a) G.K. Sandhu, R. Hundal and E.R. Tiekink, J. Organomet. Chem., 412 (1991) 31; (b) G. Sandhu and N.S. Boparoy, J.

Organomet. Chem., 420 (1991) 23; (c) K. Nakamoto, Spectra of inorganic and coordination compounds, in *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, Wiley, New York, 4th ed., 1986, pp. 259–263.

- [20] (a) C.I.F. Denekamp, D.F. Evans, A.M.Z. Slawin, D.J. Williams, C.Y. Wong and J.D. Woollins, J. Chem. Soc. Dalton Trans., (1992) 2375.
- [21] G.A. Miller and E.O. Schlemper, *Inorg. Chim. Acta*, 30 (1978) 131.
- [22] D.M. Adams, Metal-carbon and related frequences in alkyl, aryl and  $\pi$ -bonded compounds, in *Metal-Ligand and Related Vibrations*, Edward Arnold, London, 1st edn., 1967, pp. 202-203.
- [23] B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 16 (1985) 73.
- [24] T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
- [25] W.F. Howard, Jr., R.W. Crecely and W.H. Nelson, *Inorg. Chem.*, 24 (1985) 2204.
- [26] J.R. Holmes and H.D. Kaesz, J. Am. Chem. Soc., 83 (1961) 3903.
- [27] (a) T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189; (b)
  M.H. Chisholm and S. Godleski, Prog. Inorg. Chem., 20 (1976) 299; (c) A. Lycka, J. Jirman, J. Holecek and I. Tkac, J. Organomet. Chem., 372 (1989) 327; (d) S.W. Ng and V.G. Kumar Das, J. Organomet. Chem., 409 (1991) 143.
- [28] P.G. Harrison, Investigating tin using spectroscopy, in Chemistry of Tin, Blackie, Glasgow, 1989, Chapter 3, pp. 60-117.
- [29] D. Tudela, A. Javier Maira, D. Cunningham and B. Timmins, Inorg. Chim. Acta, 232 (1995) 195.
- [30] J.J. Zuckerman, in R.H. Herber (ed.), Chemical Mössbauer Spectroscopy, Plenum, New York, 1984, Chapter XI.
- [31] R.V. Parish, in G.J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Plenum, New York, 1984, Chapter 16.
- [32] J.D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354.
- [33] S. Saxena, R. Bhora and A.K. Ray, Inorg. Chim. Acta, 173 (1990) 191.
- [34] A. Jain, S. Saxena, R. Bohra and A.K. Ray, *Main Group Met. Chem.*, 18 (1995) 139.
- [35] C. Pettinari, A. Lorenzotti, G. Sclavi, A. Cingolani, E. Rivarola, M. Colapietro and A. Cassetta, J. Organomet. Chem., 496 (1995) 69.
- [36] G.M. Sheldrick, (1985) in G.M. Sheldrick, C. Kruger and R. Goddard (eds.), *Crystallographic Computing 3*, Oxford University Press, pp. 175–189.
- [37] M. Camalli, D. Capitani, G. Cascarano, S. Cerrini, G. Giacovazzo and R. Spagna, *CAOS program: User Guide*, 1986 (Ist. Strut. Chim. CNR, Monterotondo Stazione, Rome, Italy).
- [38] D.J. Cruickshank, in J.S. Rollet (ed.), Computing Methods in Crystallography, Pergamon, Oxford, 1965, p. 114.
- [39] International Tables for X-Ray Crystallography, Kynoch, Birmingham, UK, 1974.
- [40] N. Nardelli, Acta Crystallogr. Sect. C:, 39 (1983) 1141.
- [41] Chemical Design, Ltd., Oxford, UK.